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Every flight, no matter what type (there are other types

of flights with no minimum requirement), will count toward a

pilot's total flight requirement. This cost is constant over

all flights j for a given pilot i.

To satisfy the type requirements, flight j must be the

same type as the requirement in question. The second cost

depends on j, as well as i. Let

c= the cost (number of flights flown/total

flight requirement) associated with total

flights for pilot i,

and

cj= the costs (number of type j flights

flown/type j flight requirements) associated

with specific types of flights.

We will associate cl with arcs s-i since they apply to

all flights pilot i flies. Similarly, we associate c~j with

arcs i-j since they depend on the type of flight j is. We

can weight the components to reflect the scheduler's view of

which component is more important relative to the others

(i.e. we may want to emphasize the completion of air

4 refueling requirements over air combat training missions).

The objective function f(x) can now be written as
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, (BIP) Zi x o + x 1 ° = ui- 1i all i' (3.23)

T--. i X~i' =  bj- Eill (3.24)

Zj a1 j xij = ui all i (3.25)

J fik Xii < 1 k = 1,..., N, all i (3.26)

xij,'xii,, x5 i, 0, integer. (3.27)

3.4 Example Formulation

Let us illustrate the formulation with a simple example.

Consider the hypothetical flight schedule shown in figure

3-5, with six formations, requiring eight pilot assignments.

In the example we have four pilots available. Suppose that

we require each of the pilots to fly at least one, but no

more than three flights. Suppose too, that pilots 2, 3, and

4 are unavailable for flights 2, 6, and 3 respectively. The

resulting node adjacency matrix [a4,1 and time overlap

constraint matrix {fkj) (constraints (3.26)) are shown in

figure 3-6. Note that this matrix is strictly showing the

conflicts between flights. We will add the restriction that

a pilot i be available and qualified (i.e. a,,= 1) at a

later time.
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Day 1 Flight 1 Flight 2 Flight 3

Brief time 0515 0930 1400

Takeoff time 0715 1130 1600

Type flight Air Combat DART Night Inter

2 pilots 1 pilot 1 pilot
required required required

Land time 0830 1245 1715

End debrief time 1015 1430 1900

Day 2 Flight 4 Flight 5 Flight 6

Brief time 0500 0930 1400

Takeoff time 0700 1130 1600

Type flight Air Refuel Air Combat Night Inter

.1 pilots 1 p~ilot I pilt
required required required

Land time 0815 1245 1715

End debrief time 1000 1430 1900

Figure 3-5

Example Problem Schedule
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9.

N*,

4*. Flights

X 1 2 3 4 5 6

1 1 1 1 1 1 1

Pilots- - - --

3 1 1 1 1i 1 0

4 1 1 0 1 1 1
9.E

Node-node adjacency matrix

Flight

1 2 3 4 5 6

,.1 1 1 1

2 1 1

Flight 3 1

4 1 1 1

\L5 1 1

Feasibility constraint matrix

Figure 3-6

Example Problem Data
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otal ACTT DART NINT AARD

1 1 1 2 0 2

Pilot 2 2 1 N/A 1 0

3 2 0 1 0 0

4 1 1 0 0 1 0 11

Completion percentages
(in decimal form [i.e. 1 =1002])

note: a large weight deemphasizes the type
of flight, here we weight all types evenly

Flight

.1 1 2 3 4 5 6,
ACTT~ DART NINT AARD ACTT NINT

1 2 5 1 ? 2 1

2 3 3 2 3 3
Pilot

3 2 3 .2 .2 2

4 1 1.N 2 1 1

Example cost matrix

Figure 3-7

Example Problem Costs
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ABSTRACT

Air Force fighter pilots, in order to remain combat
qualified, must complete flight training every 6 months as
specified by Tactical Air Command Manual (TACM) 51-50.
Presently, scheduling is manual. As a result, pilots do not
receive an optimum flow of training and often do not complete
their required training.

We propose a computer model, an integer program, based
on branch and bound techniques to solve the problem on a
micro-computer. The model includes complicating constraints
such as crew rest restrictions and absences from duty and
ensures that each pilot receives at least a minimum, or no
more than a maximum, number of flights per week.:

Our method involves relaxing some bf the constraints
(e.g. crew rest constraints) to obtain a network flow problem.
We tighten the relaxation by solving small set covering
problems derived from the relaxed constraints.

The model was developed and tested on an IBM personal
computer. T

Thesis Supervisor: Prof. Thomas L. Magnanti

Title: Professor of Operations Research
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To help understand fkJ consider row 1 in {fkJ}. The

first three l's mean that flight 1 conflicts with flights 2

and 3. Row 3 shows that flights 3 and 4 conflict (because of

overnight crew rest), and row 4 shows that flights 4, 5, and

6 conflict.

To develop the cost matrix {clj} we assign weights, as

shown in figure 3-7, to the cost components, and multiply

them by the hypothetical completion percentages (also in

figure 3-7). The resulting cost matrix is the last matrix

depicted in figure 3-7.

As an example, consider pilot 1 and flight 2. The cost

c12, is the weight. for total flights .(1 )4 times the

completion percentage of total flights for pilot 1 (100 per

cent = 1), plus the weight for DART missions (1), times the

completion percentage. (2), which is 1.1 + 1.2 = 3. So

c1 2= 3, as shown in figure 3-7.

Figure 3-8 shows our sample problem, expanded in the

form of (BIP). The first 6 constraints are the node balance

constraints for the flights. The second 4 constraints are

for the i' nodes. The next 5 constraints are for s and the

pilots. The last 16 constraints are from the {fikd matrix,

but are now adjusted for the individual pilots. We will use

a portion of this problem to illustrate the solution
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procedure in chapter 5.
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CHAPTER 4

REVIEW OF THE LITERATURE

Scheduling has many applications. One major

application, job shop and machine job scheduling problems



Arabeyre, Fearnley, Steiger, and Teather (1) survey the

early attempts to solve the airline pilot scheduling problem.

• •Most researchers separated the problem into two parts, (1)

assigning flight legs (one takeoff to one landing) to

rotations (a round trip of one to three days), and (2)

assigning pilots to the rotations. The first problem

attempted to minimize "dollar" costs, such as costs of

overnight lodging. The second problem aimed to distribute

pilot monthly flight time evenly.

Usually researchers and practitioners considered the

first problem to be the most difficult since it had to deal

with complicating constraints due to union rules, FAA

regulations, and company policies. Etcheberry (11) developed

an implicit enumeration algorithm, using a branch and bound

framework with Lagrangian relaxation, to solve large set

covering problems such as this one.

Rubin (36) solved the problem by reducing the number of

constraints as much as possible before solving it. He would

then consider subsets of the constraint matrix columns, find

the best solution over that subset, and repeat the process

until obtaining a satisfactory solution.

Marsten (26) developed an algorithm to solve the related

set partitioning problem. This algorithm ordered the
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constraint matrix lexicographically before starting the

optimization. The algorithm then takes advantage of the

constraint structure to help fathom candidate problems

quickly.

Garfinkel and Nemhauser (15) developed a

set-partitioning procedure that reduces the problem size by

eliminating row and column vectors before applying their

algorithm. The algorithm then orders the data so the rows

with the least number of non-zero entries appear first, and

the co]*umns with the lowest costs are on the left. They ther

use an implicit enumeration algorithm that takes advantage of

this structure to build possible solutions. Pierce (33)

independently developed a similar algorithm.

Nicoletti (32) viewed the second problem (assignment of

pilots to rotations) as a network assignment problem and

successfully used the out-of-kilter method to find solutions.

The fighter pilot scheduling problem differs from the

airline scheduling problem in that all the fighter flights

originate and terminate at the same base. This eliminates

the need to develop rotations, although we still must deal

with crew rest and other regulations, just as the airlines

must.
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A possible formulation of the fighter pilot scheduling

problem is in the form of "k-duty period" scheduling problem.

This problem deals with schedules consisting of k independent

contiguous scheduling periods; for example, a schedule might

assign a person to work k four hour shifts each separated by

two hour breaks.

Shepardson (40) deals with this problem. The general

idea is to start with a proposed (yet feasible) subset of

schedules as the columns of a constraint matrix, with its

* rows being the jobs to be filled. -Pe thern separates the.

columns into new columns each with only one contiguous

scheduling period. For example; he would separate a 2-duty

* schedule containing two 4-hour shifts into two columns each

representing a single 4-hour shift. This solution strategy

is attractive because problems in which all schedules have a

single contiguous duty can be solved as network flow

problems.

He then adds extra side equations to ensure that if a

S.new column is in the solution, then all the new columns

associated with its column in the original problem

formulation, are also in the solution. In our example, if

one of the two columns with the 4-hour shifts is in the

solution, then they both must be in the solution. He then

dualizes these side equations and uses Lagrangian relaxation

51
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CHAPTER 1

INTRODUCTION

The recent development of the Rapid Deployment Force and

the events in the Falkland Islands (22) underscore the

necessity for our combat forces to be ready at a moment's

notice. To do its part, the Tactical Air Command (TAC) must

be ready to fly anywhere at a day's notice. To achieve this

capability, TAC must maintain a high level of training for

all of its pilots. The Air Force has many levels of comman!

starting with the President, Department of Defense, and

Headquarters Air Force. Although it has four major commands

with tactical fighters, we will restrict our attention to TAC

which commands the fighter units in the conti-nental United

States. Under TAC are a number of flying Wings. Each Wing

consists of three squadrons of 18 to 30 aircraft. A Wing

will normally be assign-d to one base, and usually is the

only Wing at the base. The squadron is the smallest

administrative unit.

The squadron's job is to be combat ready at all times,

but strategic decisions on resource allocation are all made

well above the squadrcn and Wing levels. For example, the

higher authorities determine the number of aircraft in each

squadron, the number of pilots assigned to the squadron, and

7
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methods to solve the problem.

4.2 Lagrangian Relaxation

In problems with many complicating constraints,

Lagrangian relaxation techniques that exploit underlying

problem structure (like the single-duty problem that can be

solved as a network flow problem) have so far yielded very

good results for a wide variety of applications. Fisher

(12), Magnanti (25), and Shapiro (391 all give good surveys

of Lagrangian relaxation methods, and mention a number of

application areas.

Lagrangian relaxation methods attempt to simplify the

problem by dualizing some constraints, multiplying them by

Lagrange multipliers, and adding them to the objective

function. Given a set of multipliers, the relatively easy

relaxed problem is solved. Then given the new solution to

the relaxed problem, we solve for new multipliers. (In

section 5.2 we describe the multiplier selection procedure in

more detail.) we can embed this method into a branch and

bound framework to systematically exhaist all possibilities,

and find the optimal solution. (See (7) and (12) for an

explanation of branch and bound methodology.)
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the amount of gasoline allocated to the squadron.

TAC also has training guidelines that set the

semi-annual training requirements for all pilots. These

guidelines are documented in TAC Manual 51-50 (41). TACM

51-50 is written to ensure that all pilots in every squadron

are obtaining at least a minimum amount of proper training.

The task for the squadron, then, is to allocate its

given resources to ensure that each pilot receives his

required training. This may not seem difficult to

accomplish, but at the present time with manual scheduling,

and with a wide range in training needs for the pilots, many

pilots either do not complete their semi-annual requirements,

or barely finish in the last week. This invariably leads to

"crisis management".

Our proposal is to build a computer model to do much of

the routine scheduling, so that schedulers can devote more

time to specialized problems. The program will use TACM

51-50 requirements to form an objective function. It will

define costs in terms of a percentage of a requirement

completed, and will try to schedule pilots who are behind

schedule (relative to others) more often than the pilots who

are ahead. We will focus on an F-15 air-to-air squadron as a

specific application.

8
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Several methods have been proposed to solve for the

Lagrange multipliers. The most popular method is subgradient

optimization. The method starts with a proposed solution for

the multipliers, then uses a subgradient of that solution to

move to a better solution. Held, Wolfe, and Crowder (18)

give a comprehensive explanation and evaluation of

subgradient optimization. Other methods include generalized

linear programming (25), the BOXSTEP method (19), dual ascent

(10), and so called mulLiplier adjustment methods (10,13).

None of these methods has performed as well as subgradient

optimization so far on a wide variety of problems, though

multiplier adjustment methods have proved to be successful on

facility location problems (Erlenkotter [10]) and generalized

assignment problems (13).

Ross and Soland (35) proposed a heuristic for finding

multipliers when solving the generalized assignment problem.

They relax the supply node bounds and solve the relaxed

assignment problem. Their method then assigns multipliers

based on the minimum penalty (increase in cost) incurred to

make the relaxed solution feasible. For each supply node

whose supply bound is exceeded, they find a new assignment

that makes that node supply feasible with minimal cost

increase. The increase in cost for that node is its new

multiplier. These multiplier problems are in the form of

knapsack problems (i.e. integer programs with only one
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Chapter 2 gives more detail of the training

requirements, and the scheduling process. It also defines

the goals, costs, and constraints that affect this problem.

Chapter 3 develops the mathematical model for the flying

portion of the schedule as an assignment problem.

Chapter 4 reviews the literature related to our

scheduling problem.

Chapter 5 discusses solution techniques for the problem,

and illustrates our procedure with a small example.

Chapter 6 describes the computer implementation issues,

and the computational results.

We have developed a branch and bound algorithm, based on

an algorithm proposed by Ross and Soland (35), which solves

the scheduling problem we propose. We were successful in

coding the algorithm onto an IBM personal computer.

9



constraint). Until multiplier adjustment methods were

developed, their method seemed to be faster than any other

for solving generalized assignment problems, their advantage

being the ability to quickly solve the small knapsack

problems to find the multipliers. We give a more detailed

explanation of this procedure in section 5.3.

Fisher, Jaikumar, and Van Wassenhove (13) have developed

a new multiplier adjustment method for the generalized

assignment problem, which seems to outperform the Ross and

Soland algcrithm They start with the Ross and Soland

multipliers, and adjust them one by one to eventially obtain

a feasible solution to the original problem. Each adjustment

ensures that the original problem is closer to ifeasibility,

and eventually the method will yield a feasible solution.

Even though it takes much longer to find the multipliers, the

method decreases the number of problems it must solve in the

branch and bound framework, and therefore runs in less time.

We will discuss this method further in section 5.3.

Chapter 5 will apply the techniques discussed here to

the fighter pilot scheduling problem.
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CHAPTER 2

THE FIGHTER SQUADRON

This chapter focuses on the background necessary to

understand the problem, including the training required in

TACM 51-50 and the present scheduling system. The second

section defines the goals, objectives, costs, benefits, and

constraints that relate to the problem, and that underscore

the mathematical model that we shall study.

2.1 'raining

2.1.1 Types of Training

The squadron administers two types of training. The

first is upgrade training and the second is continuation

training. Upgrade training is conducted according to a very

strict and controlled syllabus, and applies to pilots

becoming initially combat qualified (called Mission Ready, or

MR). It also applies to those who are training to become

flight leads and instructors. Continuation training, on the

other hand, entails more flexible requirements that must be

accomplished every six months (January to June, and July to

10



CHAPTER 5

SOLUTION PROCEDURES

This chapter will discuss solution methods applicable to

the fighter pilot scheduling problem. We will discuss the

general problem structure, Lagrangian relaxation solution

techniques, the technique developed by Ross and Soland, and

methods for solving the unconstrained assignment problem and

set covering problems.

5.1 Problem Structure

As we noted in chapter 3, (BIP) is basically a

K: transportation problem with complicating constraints

representing time overlap and crew rest restrictions. The

problem has the classical primal block angular structure (7)

shown in figure 5-1a. The common constraints represent the

transportation problem, and the overlap constraints form

separable subproblems.

The time constraints also have a special structure.

Figure 5-1b shows an enlargement of the shaded block in

figure 5-1a. All non zero entries lie between the diagonal
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December, called halves). All mission ready pilots

participate in this training.

Normally the squadron closely monitors upgrade training

and assigns students and instructors to specific flights that

meet their needs for a particular mission. Therefore,

instructor and student scheduling for upgrade training is

essentially fixed, and we concentrate on scheduling only

continuation training.

2.1.2 Training Requirements

As mentioned before, TACM 51-50 is the training bible

for the squadron. There are three general types of

requirements: number of (1) total flights, (2) special types

of flights, and (3) specific events to accomplish while

flying. We need only concern ourselves with the first two

categories since the pilots should be able to perform all

their required events as long as we schedule them for their

required flights. Appendix A describes each type of flight

and its semi-annual requirement.

In addition to flying, the pilots must complete 12 hours

of simulator training per half. The squadron must also man

other flying related duties. These include Supervisor of

11
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Flying (SOF), Runway Supervisory Officer (RSO), and Range

Training Officer (RTO). Appendix B briefly explains these

duties.

2.1.3 Pilot Qualifications

Flying training, as well as combat, is conducted in

flights of 2 to 4 aircraft. Each position in the flight

requires a minimum qualification. All pilots fit into one of

these four qualificatioo cateGories and are assigned slots in

the flight accordingly. These categories are:

1. Instructor pilots (IP)- the most experienced pilots,

whose job it is to teach all upgrade training. They

also can fly any other position available.

2. Flight leads (FL)- are qualified to lead any flight.

They are responsible for continuation training in

their flight. They may also fly as wingmen.

3. Wingmen (WG)- are fully combat qualified, but must

fly with a flight lead when there is more than one

aircraft in a flight.

4. Mission Qualification Trainees (MQT)- are not combat

qualified, and may only fly with instructors.

Figure 2-1 shows some normal formations in the air of 2 and 4

12
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line and the staircase within the matrix. The shaded "bumps"

represent the crew rest constraints that link one day's

schedule to the next. If the overnight crew rest constraints

weren't present, the subproblems would separate further into

daily subproblems. For example, figure 5-ic shows the time

constraints for one pilot in the example problem developed in

section 5.3. The arrow shows the "bump" resulting from the

overnight crew rest constraint. If flights 3 and 4 didn't

conflict, then the constraints for day 1 and day 2 would be

separable.

5.2 Lagrangian Relaxation

We could conceivably attempt to use general purpose

integer programming algorithms to solve this problem, but

because of the complexity of the time constraints, these

methods probably would not be very efficient. This brute

force approach does not take advantage of the network

structure in the common constraints, which we can exploit to

solve the problem much more efficiently. By using a

- Lagrangian relaxation algorithm, we can take advantage of the

network structure and decrease our solution times.

Fisher (12), Magnanti (25), and Shapiro (39) give a good

description of the Lagrangian technique and give many
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ship flights (the triangles represent aircraft). It also

shows we must pair a flight lead or instructor with every

wingman. Continuation training involves only flight leads

and wingmen, so we only concern ourselves with these two

catagories in our study.

2.1.4 Continuity and Crew Rest

Before moving on to the scheduling system, we briefly

explain the concepts of continuity and crew rest. Ccntinui.ty

is importar~t because a pilot will become rusty, or at least

not fly at his best, with as little as one week without

flying. Therefore the squadron will want all available

pilots to fly some minimum number of flights each week,

depending upon how many flights are available.

"Crew rest" is designed to avoid pilot fatigue. Crew

rest has two components. The first component keeps the duty

day from being too long. The duty day is measured from the

start of the pilot's first duty (flight brief time, or start

of a SOF or RSO tour of duty) to the end of his last flying

duty (flight landing time, or end of a SOF or RSO tour of

duty). The duty day can be no longer than 12 hours.

The second component of the crew rest is designed to

14



citations to applications of this methodology. We will give

a general overview here as it relates to the fighter pilot

problem.

Lagrangian relaxation is used to provide bounds in a

branch and bound algorithm by dualizing some of the

constraints. Typically, this procedure is used by

constructing a Lagrangian problem that is much easier to

solve than the original problem.

In. our case we can dualiz the node balance constraints,

associating Lagrange multipliers vj with the sink node

equations, and multipliers wi with the supply node equations,

giving the "Lagrangian relaxation" problem

Z(v,w) =min Z i Zj(cijxi,) + Zjvj(bj-Ziaijxij) +

ZiW1  (u, - Zjai3x1 j) (5.1)

subject to

ZJ fikJXiJ 1 k = 1,..., N, all i (5.2)

xiJ integer. (5.3)

We can rewrite the objective function as
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ensure the pilots obtain enough sleep and time to relax. It

is the time between the end of the last duty (end of the

flight debrief or end of a SOF or RSO tour) one day until the

start of the first duty the next. This component must be at

least 12 hours.

<

2.2 Scheduling

The squadron schedulers are a group of three to five

.ilots. They are responsible for developirg the schedule,

for deciding the timing and types of flights, and for

assigning pilots to those flights. Before they can assign

pilots there must be a mission schedule, such as the one in

figure 2-2. Each blank, in figure 2-2 represents a slot that

needs to be filled by a pilot who is qualified to fill that

slot. The flight lead briefs the flight two hours prior to

takeoff, and debriefs the flight after it lands (approximate

times are indicated).

The mission schedule is heavily influenced by factors

exogeneous to the squadron including maintenance's ability to

provide aircraft, FAA airspace availability, and availability

of other aircraft such as air refueling tankers. The

schedulers juggle these factors to design a schedule that

shows the mission times, airspace, and mission type.

15



There are a few methods available for solving for v or w

in maximizing Z(v,w). These include subgradient optimization

(18), generalized linear programming (for the LP dual problem

of maximizing Z(v,w)) (25), and the multiplier adjustment

method (10,13). Subgradient optimization has been the

dominant procedure used so far, but the new multiplier

adjustment method used by Erlenkotter (10) and by Fisher, et

al. (13) seems to work much faster in some applications.

The multiplier adjustment method starts with any values

of the Lagrange multipliers v and w, which might give a

fairly loose lower bound on Z. Then by adjusting each

multiplier one by one, we obtain a feasible solution with a

much sharper lower bound. This sharper lower bound tends to

fathom candidate problems faster than the Ross and Soland

method, which we discuss next. See the references for

explanations of the procedures discussed so iar.

In the next section we discuss a branch and bound

method, related to Lagrangian relaxation, developed by Ross

and Soland.

5.3 Branch and Bound Algorithm

To solve (BIP), we will use a relaxation algorithm
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Times

Brief 0430 0800 1330

Takeoff 0630 1000 1530

Type flight ACTT MQT/ACTT ACTT

FL IP FL
WG MQT-WGFL - FL FL -

WG -WG -G

Debrief end 0930 1300 1830 (Land 1650)

Brief 0500 0830 1430

Takeoff 0700 1030 1630

Type flight MQT/INT DACT NINT

IP FL FL
FO- FL

WG

Debrief end 1000 1330 1930 (Land 1750)

Brief 0510 0900

Takeoff 0710 1100

Type flight ACTT DACT

FL FL
WG WG

Debrief end 1010 1400

Figure 2-2

Typical Day's Schedule
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adapted from Ross and Soland (35). Their algorithm is

designed to solve the generalized assignment problem. Our

problem structure is such that we can use a slightly modified

version of the the algorithm.

5.3.1 Branch and Bound--General

Before discussing the specific aspects of the Ross and

Soland method, we review the general principles of branch and

bound methods. The general idea is to implicitly enumerate

all possible solutions to a problem (such as (BIP)) by

cutting the problem in half at each branching step, and then

finding the optimal feasible solution for each half.

For instance, we solve a relaxed problem, such as (NET),

and find the resulting x' to be infeasible to (BIP). We

select a variable, Xoranch, to branch on, and split all

possible solutions into 2 sets. One set will include all

possibilities where Xbranch = 1, and the other set will

include all possibilities where Xbr.nCt = 0.

We then solve (NET) again with the stipulation that

Xoranch = 1. If the resulting solution is feasible to (BIP)

then we know we have the best solution for the xbranch = 1

branch, and we can focus attention on the solutions-where
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Xbranch = 0.

We then go to (NET) again and solve it when we set

Xbranch = 0. Suppose the new solution is not feasible to

(BIP). Then we can repeat the branching process on another

" separation variable. We still include the restriction of

Xbranch = 0 along with any new restrictions.

If during this process, any solution to the relaxed

problem has an objective value greater than the value of the

best feasible solution found so far, we can stop looking for

the optimal solution on that the search on a branch. This

process of ending branch is called fathoming.

-* To find the optimum solution to (BIP), we use the branch

and bound method until we have fathomed all possible

branches. The lowest cost, feasible solution will then be

the optimal solution to (BIP).

5.3.2 Ross and Soland Method

This algorithm utilizes a branch and bound framework

that first relaxes the time overlap constraints and then

solves the network constraints to obtain a candidate solution

x'. It then forms small integer problems from the violated

time constraints, and solves them to find lower bounds and
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The pilot schedule is done one week at a time.

Scheduling for a longer period would be fruitless, as the

* schedule is almost never completed exactly as planned.

Various factors precipitate change. These include weather

cancellations, maintenance problems, pilot illnesses, and

unexpected pilot unavailabilities. The daily schedule often

differs greatly from the weekly schedule because of these

changes. The weekly schedule serves as a basis for the daily

schedules and lets pilots know what to expect for the week.

If there are no aircraft cancellations or other problems,

then the daily and weekly schedules should match.

One of the problems with the manual scheduling system is

that with 30 to 40 pilots, each of whom have different

requirements, it is very difficult to keep track of everyone.

TAC has used a system called TAFTRAMS to monitor the pilots'

status, and give schedulers the information they need for

assigning pilots to flights.

TAFTRAMS required punch cards to be sent to another

building to be entered into a computer. Twice a week a

computer generated printout was sent to the schedulers. Thus

information was normally 1 to 3 days late. TAFTRAMS would

make a squadron-based computer scheduling program difficult

to implement.
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separation variables to use in the branching process. We use

the separation variables to form candidate problems in which

we divide the possibilities in half by adding the constraint

that the separation variable must be I in our next solution.

If the next solution to (NET) (or (BIP)) is feasible, then we

try the other half of the possibilities (i.e. solve (NET)

when the separation variable is fixed at 0). We first

discuss the procedure, then illustrate it with the small

example problem formulated in chapter 3.

The relaxed problem is

ZR = min Z, .J cijxij (5.6)

subject to

=I aijxij bj all j (5.7)

Ex 5 =s Zjb3 - Zili (5.8)

(NET) -i x1j + x5 j, - u1  - li (5.9)

j aijxij= ui all i (5.10)

x1 j, xlj,, xsj, integer (5.11)

which is a min-cost flow transportation problem. Later in
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The new system is called AFORMS. It will use a micro

computer in the squadron to store TACM 51-50 information, and

Q allow the schedulers access to current information. AFORMS

allows us to build a program that uses current information in

the squadron computer.

The current manual scheduling system has other problems

besides the lack of timely information. There is no central

place to keep information concerning when pilots have

meetings, appointments, or are on vacation. Sometimes this

results in someone being scheduled to fly when he is not

available. Crew rest violations occur mainly when the

schedule is changed at the last minute, without checking the

new pilot's crew rest status.

2.3 The Model

Now that we have an idea of the scheduling situation in

the squadron, let us look at how we might go about building a

model. First, before considering the mathematical

development in chapter 3, let us describe the goals of the

model, the relevant cost structures, and the constraints.

2.3.1 Goals of the Model

18



the chapter we describe methods for solving (NET).

Let x' denote an optimum flow vector for (NET) and let

ZR denote its optimum objective value. If x" is feasible for

the time constraints, then it is optimal for the original

pilot scheduling problem (12).

If the solution x* to (NET) is infeasible to (BIP), we

can then form auxilary problems (subproblems) with the time

constraints. We will have one subproblem for each pilot i.

The objective of these subproblems is to find the minimum

cost reallocation of flights from pilot i to other pilots, so

that pilot i's schedule is feasible. By solving these

subproblems for all i, we will find a lower bound for Z in

(BIP). This lower bound will help fathom, the current

candidate problem, and help find a separation vari-ible (to

use for the next branch).

Let Eqj be the reduced cost of the pairing of pilot q to

flight j in x. Let Erj be the next larger reduced cost for

flight j, and define

oi Pj = {Crj - J}

then pj represents the minimum penalty for reassigning flight

j with respect to the solution x'. Also let

S= {j : = 1),

and
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In general, we want to maintain the virtues of the

present system, while using the computer to help alleviate

some of the problems now encountered. Therefore to

accomplish this goal, the model must:

1. Ensure that TACM 51-50 requirements are met and are

being allocated evenly.

2. Ensure that every available pilot flies the minimum

number of flights every week.

3. Find a solution to the weekly (and daily)

schedules with no crew rest violations or

uinavailable pilots assigned to duties.

4. Solve the problem in less time than the

present system.

5. Be able to run the program on a micro computer.

In addition, the model should provide the means to

schedule the flying related duties, and be able to display

who is available in case last minute problems arise.

2.3.2 Costs of the Problem

The costs in this problem cannot be measured directly in

dollars and cents, although in the long run better training

will result in a more cost effective force. The costs here

are training costs associated with TACM 51-50 requirements.
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Yij = 1 if we reassign flight j from pilot i

to pilot r

0 otherwise.

Consider the problem

z= min Zj.L p3 yij (5.12)

subject to

(SIP 1 ) EJ f'ikjYj dik all k (5.13)

Y 1 0 or 1, (5.14)

where

di =i Xi 1

The value of dik is the minimum number of flights which must

be reassigned to satisfy constraint k. The solution, y',

this problem represents decisions to as to whether to let

pilot i keep flight j (i.e. y~j= 0), or to reassing flight j

to pilot r (i.e. y~j= 1).

If yj = 0, then pj is large, and we would want to keep

this pairing as it is. On the other hand, if yj = 1 and pj

is small, we will not be hurt much by reassigning flight j to

pilot r.

When we solve (SIP,) the resulting zi represents the
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minimum increase in cost by changing x" to make pilot i's

schedule feasible. The overall minimum penalty is Eiz,, so

a lower bound, LB, on (BIP) is

LB = ZR + Ziz i .

We can use LB to fathom nodes in the branch and bound

procedure (35).

As in Ross and Soland, we can use the solutions ytj to

suggest a new solution that tends to be feasible. To form

the new test solution, we start with the solution x* from

(NET). We then change the x corresponding to y~j = 1 to

zero, and set the corresponding variables variables Xrj to

one. If this new solution is feasible its objective value is

given by LB. The solution is also optimal for the candidate

problem we are investigating, since we found the minimum

increase in cost when solving the subproblems.

If the new solution is still infeasible, we need to find

a separation'variable (x,,). A logical choice is one of the

variables with y>j = 0. We choose to branch on the xjj with

the maximum pj for all i. When we branch we will set xij = 1

•  as the first candidate problem, and x, = 0 as the second.

5.3.3 Algorithm Summary
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rules.

Here the squadron restrictions will set only minimum and

maximum number of flights per week. There are, of course,

many possibilities for other constraints.

Chapter 3 will now use these ideas to develop a

mathematical model to be used to solve the pilot scheduling

problem.
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To summarize the procedure, figure 5-2 gives the general

algorithm, in flow chart form, that we will use to solve the

fighter pilot scheduling problem. The following is the

written form of the algorithm.

Step 0: Initialize. Read in the data and let LB*

infinity.

Step 1: Solve (NET)-- using a min-cost network flow

algorithm to obtain x' and ZR.

Step 2: Test the solution. Test to see if x" is

feasible with respect to the time constraints. If it is

feasible or if ZR > LB* (the best bound so far)', then go to

step 6. Otherwise go to step 3.

Step 3: Solve SIP, for all i. Use an integer

programming algorithm to find y' and zi, and therefore LB for

the current candidate problem.

Step 4: Form a new problem--by changing the x variables

where y>j = 1 so that xi, =0 and xr = 1 (r as defined

previously). If this new problem is feasible go to step 6,

otherwise go to step 5.

Step 5: Select the separation variable. From the
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CHAPTER 3

PROBLEM FORMULATION

The exact formulation of this problem depends on how we

wish to solve it. This chapter formulates the problem as an

assignment problem, assigning pilot to duties at a specified

cost, with additional constraints modeling crew rest

requirements and preventing a pilot from being scheduled for

two duties at once.

The mathematical programming portion of. the model will

deal only with scheduling flights. Most o'f the jobs are

flights, and by simplifying the problem in this manner we

keep it from becoming too complicated for small computers.

The computer will still aid in manual scheduling of the other

duties not dealt with by the mathematical programming

routine.

After we find a solution to the flying problem, the

computer will display who is available for the other duties.

The scheduler can then select someone to fill the duty. If

there is no one available for a duty, the scheduler can

assign someone, and then resolve the flight problem with that

pilot now unavailable during his assigned duty.
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START
Initialize

Solve

(NET)

x Is no
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variable

yes

Terminate

figure 5-2

Branch and Bound Flow Chart
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variables where yj = 0 select the one with the maximum pj.

Set xij = 1 and go to step 1.

Step 6: Test for optimality. If LB < LB" then the

current solution becomes the new incumbent solution, and let

LB* = LB. Go to step 7.

Step 7: Select the next candidate problem. Let the

last separation variable (xij) equal 0, and go to step 1. If

there are no more candidate problems, terminate.

This method can be interpreted as Lagrangian relaxation,

as the optimal shadow prices, v" and w*, from (NET) which

determine the reduced costs, c13 , can be, viewed as the

Lagrange multipliers.

5.3.4 Branch and Bound--Example

We will illustrate the procedure with a simplified

example. We consider the example posed in chapter 3, except

to help simplify the discussion, we will only use the first

four flights (requiring 6 pilots [figure 5-3a]). We assume

we have four pilots available, and can model the situation by

the network in figure 5-3b. Each pilot must fly at least

once, but no more than three times. Figure 5-3c specifies
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=j 1 if pilot i is assigned flight j

0 otherwise,

X = the total number of flights assigned

to pilot i (i.e. the flow from the

super source, s, to i in the network),

and let

ui and i, denote the upper and lower bounds on the

number of flights per week for pilot i to fly.

Let us also define

gij= 1 if pilot i is qualified for flight j

0 otherwise,

and

q =j 1 if pilot i is available for flight j

0 otherwise.

We also let

aij = gij*qij , so that

a~j 1 if arc i-j is feasible

0 otherwise.

Until we define the cost function later in the chapter, we

will assume a general cost function, f(x).
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Day 1 Flight 1 Flight 2 Flight 3

Brief tim 0515 0930 1400

Takeoff time 0715 1130 1600

Type flight Air Combat DART light Inter

2 pilots 1 pilot 1 pilot
required required required

Land time 0830 1245 1715

End debrief time 1015 1430 190

Day 2 Flight 4

Brief time 0500

Takeoff time 0700

Type flight Air Refuel

2 pilots
required

Land time 0815

End debrief time 1000

Figure 5-3b

Example Problem Schedule
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The assignment problem can be written

Z = min f(x)

subject to

Z aij x1 j = 1 j = 1, 2,..., N (3.1)

:E < U i = 1, 2,..., M (3.2)

xij 0 or 1, x5, integer. (3.3)

Constraints (3.1) require every flight j to have one pilot.

Constraints (3.2) limit the total number of flights during

the week for each pilot i.

Instead of using a formulation like this where each node

j represents one flight, we can reduce the number of j nodes

and therefore the problem size. For example, suppose we have

2 flight and 2 wingman slots for each flight of four aircraft

to be scheduled. We can aggregate two identical nodes (i.e.

flights with identical takeoff times, flight durations, pilot

qualification requirements, and types), and make a new node

with a demand of b, = 2. The effect of this adjustment will

be to decrease the number of constraints in (3.1). Equation

(3.2) will remain the same. In the schedule, depicted in

figure 2-2, this procedure reduces the number of flight nodes
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Plights

C 3  1 2 3 4

1 2 4 1 3

Pilots

3 1 3 2 2

4 2 1 2

Example Problem Costs (from chapter 3)

Plight

fj 1 2 3 4

Constraint- - -

k 2 11

Time Constraint Matrix for Example Problem

__ Example Problem Cost and Time Constraint Matrices
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from 130 to 80, a 38 percent reduction. Notice that all we

have to do is change equation (3.1) to

4%

, a1  xij = j = 1, 2,..., N. (3.4)

The decrease in problem size would help reduce the work

involved in generating the cost function, and the arc-node

incidence matrix, but constraint (3.1) implies the upper

bound of 1 on the arc i-j, so it will be more beneficial in

the solution algorithm.

3.1.2 Eliminating the Supply Bounds

Depending on the algorithm or computer code used to

solve the problem, it may be useful to have a non-varying

supply at the pilot nodes, instead of the variable bounded

supply in our present formulation. We can accomplish this by

two well known transformations: transforming the lower bound

to zero and eliminating the upper bound (Golden and Magnanti

(1))

In figure 3-1 the arcs s-i are bounded by u, and lI,

which represent the maximum and minimum number of flights per

week for pilot i. To transform the lower bounds to zero, we

substitute
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the cost (c~j) and time overlap (fkj) matricies, that we

developed in chapter 3. An "X" in the cost matrix means that

S. the pilot cannot fly that flight (due to other obligations).

Step 0: Initialize. LB* = infinity.

Step 1: The optimal solution is the set of pairings

shoun circled in figure 5-4a. ZR = 9.

Step 2: Pilot 4's schedule is infeasible since he is to

fly both flights 1 and 2, so we go to step 3.

Step 3: We find the pj's by looking at flgure 5-4a and

noting that to reassign flight 1 from pil9t 4 to pilot 1

would cost nothing, and to reassign flight 2 to pilot 3 would

cost 2 units. We then solve SIP 4 and find y;,= 1, and y;2= 0

(figure 5-4b). LB = 9.

Step 4: The new solution, after reassigning flight 1,

is still not feasible.

Step 5: We choose x4 2 as the separation variable, so we

set x42 = 1, x4 1 = 0, (we know x4 1 cannot equal 1 in a

feasible solution). Go to step 1.
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is Xis -i

for xIS, so we have the new bounds

0 S x' 1 s 5 u -li,

and the supply and demands are adjusted as shown in figure

3-2. For example, if the original arc s-i had a lower bound

of 2, and upper bound of 5, and a flow of 4, then the new arc

formed by this transformation would have a lower bound of 0,

an upper bound of 3, and a flow of 2.

We now wish to eliminate the upper bound on the new arc

s-i. We start (in figure 3-3) with the arc s-i already

adjusted so the lower bound is zero. Then we add a dummy

node, i', between nodes s and i. We associate the cost of

arc s-i with the new arc s-i', and the upper bound with arc

i'-i. Now we simply reverse arc i'-i (see figure 3-3) which

results in a demand of u1 - 1, at i', and a net supply of ui

at node i. The upper bound is now implied by the node

balance constraint at node i.

The network retains its bipartite form (figure 3-4). We

can still express the problem in circulation form by using a

super supply node, ss, with arcs ss-i having upper and lower

28
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q-ft

Flights

1 2 3 4 z-9

- -
-R

2 3
Pilots - 1-@

3c:jI:3 2 2

4(2 0(1m o Pilot 41Is infeasible

Soution to (NET) - no restrictions

z4 min OY4 1 + 2Y4 2

"t subject to Y41 + Y"42 '

4 - 0, Y4 1 - 1, Y:2 = 0

LB - ZR + Z4  9

Figure 5-4a

Example Problem--First Solution

7
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Eb xs

Figure 3-2

Eliminating Lower Bounds
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Flights

C. 1 2 3 4 LB- 9

0 JD 3 1 Pilot 1 is infeasible

2 3 2 Q
- Pilots - -

2 12

,N ©X01

Figure 5-4b

Solution After First Reassignment
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Figure 3-3

Eliminating Upper Bounds

30



Step 1: The solution to the candidate problem with x 4 2

= 1 is in figure 5-5a. ZR = 9.

Step 2: Pilot l's schedule is now infeasible because he

is scheduled for flights 1 and 3.

Step 3: We solve SIP, and find Yli 1, Y,3 = 0, and LB

= 10.

Step 4: Reassigning flight 1 to pilot 2 yields a

feasible solution (figure 5-5b), so this candidate problem is

fathomed, and we go to step 6.

Step 6: 10 is less than infinity, so LB* =,10, and the

candidate problem with x4 2 = 1 is the current incumbent

solution. Step 7: We now look at the problem with x4 2 = 0,

go to step 1.

Step 1: Figure 5-6 shows the new solution when x42 = 0.

Step 2: The optimal value is 11, which is greater than

LB', so we go to step 6.

Step 6: The old solution is still the incumbent

solution.
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Flights

1 1 2 3 4 zR -9

14013 3 Pilot 1 is infe asible

2 32(1
Pilots

, 3 2 2

00
Solution to (NET) with x42 - 1

z 1  min Yll Y13

subject to yll+Y 1 3  1

Z- 1, 1, Y1 3 - 0

LB- 10

Figure 5-5a

Example Problem-Second Solution
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Flights

c 1 2 3 4

1 2 4 Q113

Pilots 2 3 X 2Q02)ZR'll,

Z >LB

0 0 so the problem

4~I~II~ 0is fathomed

iIX

Solution to (NET) with x4 2 - 0

Figure 5-6

Example Problem-Third Solution
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assignment to overlapping flights.

3.2 Complicating Constraints

3.2.1 Overlap Constraints

Note that flights j are arranged in chronological order.

Consider j, and j2 as two different flights, in the same day

(where j, starts before j2 ). We cannot have j, overlap any

portion of j2 and still assign one pilot to them both. We

can model this situation with the multiple choice constraint

xi, + x13  1

for every pilot i we might want to assign to both flights.

Both variables can be zero, but only one can be, non-zero and

have the equation satisfied.

To extend this idea, consider any flight k. Then define

R= (k) U [j : the duration of flight k overlaps

flight j and k starts before j).

For every pilot i we have a series of constraints associated

with every job he can fill.
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(NET) ZR 9

2 3

X42=I LB*= 10 X 4 2  0 LB=1

feasible infeasible

Figure 5-7

Branch and Bound Summary
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EjERKa 1  xij s 1 k = 1, 2,..., N. (3.10)

The first constraint (k=l) starts with flight 1 and

checks all subsequent flights (j) for time conflicts. If k

and j conflict, aj is included in the summation (i.e.

a 13 = 1), otherwise a ij is excluded (i.e. a j= 0). We then

add a similar constraint for flight 2 (i.e. k = 2), and so

on. If flight 2 conflicts with flight 1, we do not include

flight 1 in the equation k = 2. This is because the equation

with k = 1 already prevents flights 1 and 2 from being

scheduled at the same time. Therefore we can simplify the

task of developing these overlap constraints by including

only future flights in the time overlap constraint for flight

k.

3.2.2 Crew Rest Constraints

For the crew duty days, we need only consider flights

landing later than 12 hours after the first duty of the day.

A This normally means checking flights in the beginning of the

day with those at the end of the day. For any flight k, we

define
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Step 7: There are no more candidate problems, so

terminate. The optimal solution is x 2 1 = 1, x 3 1 = 1, x 4 2 =

1, x1 3 = 1, x24 = 1, and x44 = 1, with Z = 10.

This example showed how we may be able to find a

feasible solution by reassigning flights when y* = 1, and

that we can fathom candidate problems by use of the best

lower bound. Figure 5-7 gives a picture of how we used the

branch and bound process.

5.4 Network Problem

To find candidate solutions for x to use in the

(SIPj)'s, we must solve an assignment type min-cost network

flow problem. We have three possible solution methods: the

primal simplex (7), the primal-dual (5,6), and the

out-of-kilter (14). See the references for explanations of

the primal-dual and out-of-kilter methods.

The primal simplex method has been modified for use with

min-cost network and transportation problems (17,23). The

program we will use is a specialized version of the simplex

method called the modified distribution method, which is used

for transportation problems. Our code was adapted from

Levin, Kirkpatrick, and Rubin (23), and Poole (34). The
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Sk= {k) U {j: the landing time of flight j is more than

12 hours after the start of flight k, and

flight j is in the same day as flight k}.

Then to prevent someone from flying both early and late, add

the multiple choice equations

J(S f. sKai j xij 1 k = 1, 2,..., N (3.11)

to the problem for each pilot i.

Similarly the overnight crew rest requirement would only

involve the late flights of one day and the early flights of

the next. So if

Tk = {k} U {j: the start time of flight j is less

than 12 hours from the time at which

flight k ends),

then the associated equations for each pilot i are

ZjfT.aij xij 1 k - 1, 2,..., N. (3.12)

3.2.3 Reducing the Number of Complicating Constraints
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algorithm finds augmenting paths at each pivot, and then

pivots the new variable into the basis. We can use the "big

M" method for our cost structures (i.e. infeasible pairings

will have very large costs) so that we do not need to start

with a feasible solution. Any solution that satisfies the

supply and demand constraints (even over infeasible arcs)

will serve as a starting solution. We can use the big M"

property to advantage during our branching process. When we

set xij 0 we change cij to big M and it is pivoted out of

the basis. Similarly, if we wish xij to be 1, we let

cjj = -M and xij is pivoted into the basis. We can then

start the intermediate solution process from an almost

feasible (and almost optimal) solution. The time required

for such a solution procedure is shorter than if we solved

the new problem from scratch at each iteration.

The algorithm is explained in detail in Levin, et al

(23), and in many Operations Research texts. Poole (34)

gives a BASIC code for the algorithm.

5.5 Time Constraint Subproblems

The final section of this chapter describes the

methodology we can use to solve the subproblem (SIP 1 )

formulated earlier. There are two methods we will -onsider
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for possible use. The first is to convert (SIP 1 ) into a

!* knapsack problem and then, using knapsack algorithms, find a

solution, or second, because the problem is small, we can



numbers which must be appropriately approximated to find a

solution. As a result, the numbers in the problem may become

very large.

Garfinkel and Nemhauser describe a method which combines

constraints in pairs until all are combined into one

constraint. Suppose we want to combine the constraints

• i f 1 jyij + s1 = 1, (5.17)

and j, f2.y~j + s, = 1 (5.18)

into one.

We first find a multiplication factor, Ce , for one

constraint (say the first). We then multiply the other

constraint oy Ce, and then add the two constraints together.

In our problem we can always weight the constraints by

S= Z fikJ +1 (refer to Garfinkel and Nemhauser). The new

constraint is given by

(f 3+ lf23 )yi + S + S S1 S +O 1 . (5.19)

We can then combine the new equation with another equation,

and repeat the process until only one constraint remains. If

we had a large number of constraints, this method could
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9%,

Z min f(x)

subject to

"i aij xij = 1 all j (3.14)

Zi , + x = ui- li all i (3.15)

x5 = ZEbj -Zi (3.16)

aij xij = ui all i (3.17)

Z fikJ XiJ < 1 k 1,..., N, all i (3.18)

xi , xii,, xsi, >0, integer. (3.19)

The problem has N +2M + 1 node balance constraints

(where N is the number of flights and M is the number of

pilots). Each pilot has N-i overlap constraints, so in all

we have M(N - 1) of these constraints. Thus, for example, in

a problem with 7 pilots and 24 flights, the formulation h..

39 node balance constraints, and 161 time overlap

constraints.
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produce some large numbers, but with our problem size the

derived coefficients should not be excessively large.

Once we transform the set covering constraints to

knapsack constraints we can solve the problem by efficient

dynamic programming algorithms. Garfinkel and Nemhauser (16)

give an algorithm that is appropriate for solving this

problem.

5.5.2 Enumeration

Because of the small size of (SIP,), enumeration might

be almost as fast as using a knapsack algorithm. Even though

the problem might have a large number of feasible solutions,

on the average we would expect the problems to be very small,

and solution times very small. We also eliminate the time

required to transform the problem. Therefore we will use the

enumeration technique when implementing the solution

procedure.
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3.3 Costs

So far all we know is that we wish to minimize some cost

function having to do with the shortfall in TACM 51-50

requirements. We assume that f(x) is a linear combination of

the individual costs of assigning pilots to flights. This

choice is consistent with our use of the assignment model, so

that each arc has a per unit cost in the objective function.

This also means we can generate the arc costs independently;

that is, the cost of one arc never depends on the cost of

another.

Recall from chapter 2 that we must satisfy the

requirements for the total number of flights, and for the

number of each type of flight. To accomplish this goal we

break the costs into two components. The first component is

the cost associated with the amount flight j can contribute

to satisfying pilot i's need for total flights. The second

component is the cost associated with the amount flight j can

contribute to-pilot i's requirement for flights of type j.

We define the "cost" of a flight for pilot i to be

proportional to the number of flights pilot i has already

accomplished. In other words, costs will be defined as a

function of the percentage of TACM 51-50 requirements pilot i

has finished.
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CHAPTER 6

CONCLUSION

6.1 Background

Our goal in this thesis has been to develop a model that

would solve the fighter pilot problem on a micro-computer.

We did not set out to develop a computer code that is in any

sense best, or even efficient. Rather, we wished to-

establish the computational viability of using

micro-computers and modern integer programming methods to

solve scheduling applications such as the squadron pilot

problem. Therefore, most of our observations are geared

toward the problem structure, implementation issues, and a

general evaluation of the method.

In order to ensure that the program would run on a

micro- computer, we developed and tested our code on the IBM

personal computer (IBM PC). Our particular computer was

equipped with a FORTRAN 77 compiler that we decided to use

for this project. The IBM PC contained 128K of internal

memory and 2-320K, 5 1/4" disk drives.
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Every flight, no matter what type (there are other types

of flights with no minimum requirement), will count toward a

pilot's total flight requirement. This cost is constant over

all flights j for a given pilot i.

To satisfy the type requirements, flight j must be the

same type as the requirement in question. The second cost

depends on j, as well as i. Let

c= the cost (number of flights flown/total

flight requirement) associated with total

flights for pilot i,

and

cj= the costs (number of type j flights

flown/type j flight requirements) associated

with specific types of flights.

We will associate cl with arcs s-i since they apply to

all flights pilot i flies. Similarly, we associate c~j with

arcs i-j since they depend on the type of flight j is. We

can weight the components to reflect the scheduler's view of

which component is more important relative to the others

(i.e. we may want to emphasize the completion of air

4 refueling requirements over air combat training missions).

The objective function f(x) can now be written as
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To test the program we obtained old schedules from the

27th Tactical Fighter Squadron to use as the data. We then

used a subset of the data for the development and initial

stages of testing. We never progressed far enough to try

full size problems.

6.2 Methodology

Our approach to the problem was to solve it in 3 phases:

a matrix generation phase, an optimization phase, and an

output phase.

The matrix generation phase takes the raw data from user

data files and converts the data into a cost matrix and a

feasibility matrix (as we did in the example in Chapter 3).

We puc these two matrices into files, as inputs to the

optimization phase.

We had five raw data files:

1. Pilot data -- this includes the pilot's name and

qualifications data,

2. Pilot accomplishment -- this file contains the number
.4

of each type of flight a pilot has flown,
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where w1  and w2 are appropriate weights assigned to their

respective costs. The weight w; can depend on what type of

flight j is.

The costs are designed to model the differences in the

desirability between the pilots. The weights are designed to

allow the schedulers to stress one type of flight over

another. For instance, the schedulers may decide that

filling the requirements for DART missions is more important

than filling ACTT missions because the squadron will have no

more DART missions for a month (which is often 'the case). By

making the weight larger for the ACTT missions, relative to

the DART missions, we demphasise ACTT missions relative to

DART missions (since we are minimizing costs).

The problem statement becomes

z = main , c xI, + i Z.wjclc )Ci (3.21)

subject to

, aij xi = all j (3.22)
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3. Pilot availability -- this file contained information

concerning when a pilot was not to be available forp! flying duty (day and times),

4. Requirement data -- this file stores the TACM 51-50

requirements,

: 5. Schedule -- this file holds the schedule we wish to

fill. It includes times, type of flight, and the qualif-

ications required to fly it.

The Optimization phase solved the problem using a branch

and bound algorithm as we have discussed in Chapter 5. We

originally tried to use a general network simplex algorithm

(the code was called NETFLO [21]) to solve zhe relaxed

network problem. The code proved to be too large for the IBM

PC when imbedded in the branch and bound code. We then

decided to use a code designed to solve the classical

Hitchcock transportation problem (34).

The code to solve the subproblems is an enumeration

method. We first develop a matrix that indicates which

pairings are infeasible, so we do not have to consider all

possible solutions to the problem.

90



, (BIP) Zi x o + x 1 ° = ui- 1i all i' (3.23)

T--. i X~i' =  bj- Eill (3.24)

Zj a1 j xij = ui all i (3.25)

J fik Xii < 1 k = 1,..., N, all i (3.26)

xij,'xii,, x5 i, 0, integer. (3.27)

3.4 Example Formulation

Let us illustrate the formulation with a simple example.

Consider the hypothetical flight schedule shown in figure

3-5, with six formations, requiring eight pilot assignments.

In the example we have four pilots available. Suppose that

we require each of the pilots to fly at least one, but no

more than three flights. Suppose too, that pilots 2, 3, and

4 are unavailable for flights 2, 6, and 3 respectively. The

resulting node adjacency matrix [a4,1 and time overlap

constraint matrix {fkj) (constraints (3.26)) are shown in

figure 3-6. Note that this matrix is strictly showing the

conflicts between flights. We will add the restriction that

a pilot i be available and qualified (i.e. a,,= 1) at a

later time.
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The branch and bound code directs the program flow and

keeps track of the current candidate problem. It puts bounds

on the variables by changing costs depending on whether we

want the variable at 1, 0, or free (e.g., cost equals "M" if

the variable is restricted to zero or equals "-M" if the

variable is restricted to 1).

We use a depth first search to find a feasible solution

quickly. If we find a feasible solution early in the

enumeration procedure, we can reduce the number of problems

to be considered. We also include the option of stopping at

the first feasible solution, which might be useful for

problems that are too large to solve to optimality or for

problems where we obtain "good" or near optimal solutions

before terminating the complete branch and bound eumeration.

At each branch we use the feasibility matrix (as in the

example problem) to exclude all variables that conflict with

the separation variable. This hopefully helps leaa to a

feasible solution. If our transportation algorithm then

yields a solution that includes infeasible arcs, we know
there are no feasible solutions along that branch, so we can

fathom the branch.

Once it has discovered the solution to the problem, the

program writes it into a file for the output generation
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Day 1 Flight 1 Flight 2 Flight 3

Brief time 0515 0930 1400

Takeoff time 0715 1130 1600

Type flight Air Combat DART Night Inter

2 pilots 1 pilot 1 pilot
required required required

Land time 0830 1245 1715

End debrief time 1015 1430 1900

Day 2 Flight 4 Flight 5 Flight 6

Brief time 0500 0930 1400

Takeoff time 0700 1130 1600

Type flight Air Refuel Air Combat Night Inter

.1 pilots 1 p~ilot I pilt
required required required

Land time 0815 1245 1715

End debrief time 1000 1430 1900

Figure 3-5

Example Problem Schedule
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phase.

The output generation phase contains a short program to

sort the solution and display it in a form useful to the

user.

Appendix C contains the computer code of the 3 programs.

6.3 Results

Our first concern was that the cost structure would lead

to unstable solutions. Many of the flight categories have

requirements for only 2 to 4 flights (e.g., DART and INST)

and in our data many pilots had not accomplished any, meaning

that many of the costs were essentially zero. We were

concerned that this degeneracy would have a serious efiect on

our ability to obtain a solution.

We found, in the transportation algorithm, that 70 per

cent of the pivots were degenerate, in that they involved no

transfer of flow. They only moved variables in and out of

the basis. The algorithm did, however, find optimal

solutions each time it was used.
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9.

N*,

4*. Flights

X 1 2 3 4 5 6

1 1 1 1 1 1 1

Pilots- - - --

3 1 1 1 1i 1 0

4 1 1 0 1 1 1
9.E

Node-node adjacency matrix

Flight

1 2 3 4 5 6

,.1 1 1 1

2 1 1

Flight 3 1

4 1 1 1

\L5 1 1

Feasibility constraint matrix

Figure 3-6

Example Problem Data
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This means that the subproblems consumed the major share

of the solution time. Reducing the solution time would

require an efficient algorithm for the subproblems (such as a

good 0-1 knapsack algorithm).

Another finding was that the number of pilots

unavailable to fly due to other commitments had a significant

impact on the ability to find a feasible solution (to BIP).

Problems with relatively few instances of unavailable pilots

were solved much faster than problems where pilots had

numerous other duties.

The internal memory of the IBM PC is capable of handling

our program and data. The storage required for an 8 by 25

problem is only •6.5K. The execution code requires 56K of

storage..

6.4 Conclusion

The methods we have discussed do solve the fighter pilot

scheduling problem. There is, however, room for-improvement.
I

The computer code could be improved to accelerate

computations. There may be better algorithms (such as the

". more complicated multiplier adjustment method) to solve the

problem. In the future, we hope to see if any of these
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otal ACTT DART NINT AARD

1 1 1 2 0 2

Pilot 2 2 1 N/A 1 0

3 2 0 1 0 0

4 1 1 0 0 1 0 11

Completion percentages
(in decimal form [i.e. 1 =1002])

note: a large weight deemphasizes the type
of flight, here we weight all types evenly

Flight

.1 1 2 3 4 5 6,
ACTT~ DART NINT AARD ACTT NINT

1 2 5 1 ? 2 1

2 3 3 2 3 3
Pilot

3 2 3 .2 .2 2

4 1 1.N 2 1 1

Example cost matrix

Figure 3-7

Example Problem Costs
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1

methods can be successfully implemented on a micro-computer.

Let us analyze our program with respect to the goals we

set for ourselves in Chapter 2. The first goal is to ensure

that TACM 51-50 flight requirements are met. We accomplish

this through our objective function. Our costs are such

that, those pilots who are behind relative to other pilots

will be scheduled more often. Although this approach does

not ensure all flight requirements will be met, it does tend

to keep anyone from lagging behind. Moreover, it gives the

schedulers the flexibility to change scheduling priorities

for the pilots by changing the cost structure.

The second goal is to ensure that each pilot's minimum

and maximum number of flights per week are observed. Our

transportation algorithm, by virtue of our lower and upper

bound transformations ensures that we comply with this

restriction.

The third goal is to ensure no pilot flies without

proper rest, flies with too long a duty day, or is scheduled

when not available to fly. Our development of the overlap

constraints and the feasibility matrix ensure that no one is

scheduled during those times.
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The fourth objective is to solve the problem in less

time than the present system. The present system takes about

two man-days of work to find a "good" ,schedule. Once

proficient with the data structures, schedulers could solve

the problem in less than 1 hour, including inputting data

into the data files and running the program. Clearly, using

this program would provide time savings for the schedulers

and free them for other tasks.

The fifth goal is to run the program on a

micro-computer. We have successfully accomplished this,

however, we have not tried full-scale problems yet. The

storage requirements for our sample problems were well within

the capabilities of the IBM PC, and we postulate that we

could, in fact, solve problems of 30 pilots and 120 flights

on this computer.

We did well on the five goals we stated, but we also

mentioned that we would like to have auxiliary programs that

are useful in daily decision making. We were not successful

on this point as time did not permit us to concentrate on

that aspect of the model. In addition to efforts in

bettering the optimization code, we would like to see someone

develop a user friendly interface with the program, so that

non-technical people could effectively run the optimization.
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To help understand fkJ consider row 1 in {fkJ}. The

first three l's mean that flight 1 conflicts with flights 2

and 3. Row 3 shows that flights 3 and 4 conflict (because of

overnight crew rest), and row 4 shows that flights 4, 5, and

6 conflict.

To develop the cost matrix {clj} we assign weights, as

shown in figure 3-7, to the cost components, and multiply

them by the hypothetical completion percentages (also in

figure 3-7). The resulting cost matrix is the last matrix

depicted in figure 3-7.

As an example, consider pilot 1 and flight 2. The cost

c12, is the weight. for total flights .(1 )4 times the

completion percentage of total flights for pilot 1 (100 per

cent = 1), plus the weight for DART missions (1), times the

completion percentage. (2), which is 1.1 + 1.2 = 3. So

c1 2= 3, as shown in figure 3-7.

Figure 3-8 shows our sample problem, expanded in the

form of (BIP). The first 6 constraints are the node balance

constraints for the flights. The second 4 constraints are

for the i' nodes. The next 5 constraints are for s and the

pilots. The last 16 constraints are from the {fikd matrix,

but are now adjusted for the individual pilots. We will use

a portion of this problem to illustrate the solution
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procedure in chapter 5.
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CHAPTER 4

REVIEW OF THE LITERATURE

Scheduling has many applications. One major

application, job shop and machine job scheduling problems

(29), have been studied for many years. Conway, Maxwell, and

Miller (9) is a general reference to these problems. The

airline crew scheduling problem (1,30,32,36) has also

received much attention in the literature. vehicle delivery

problems (4) (as opposed to routing problems) have also been

studied by many researchers. Scheduling algorithms also

apply to staffing problems, such as the nurse scheduling

problem (2,28). Miller (27) gives a* survey of personel

scheduling methods as they apply to the public sector.

In general, a personel scheduling problem models

situations in which persons are to be assigned to a subset of

jobs based on some criteria. This chapter will review the

literature dealing with a particular class of applications,

airline pilot scheduling, and with procedures applicable to

the fighter pilot scheduling problem.

4.1 Airline Crew Scheduling
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We are convinced that the use of Operations Research and

Computer Science planning tools, such as those discussed in

this thesis, are of great benefit to the Air Force.

Specifically, we believe that these tools can be used at the

Squadron and Wing levels, not only for pilot scheduling, but

for many of a number of similar scheduling and allocation

problems.
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Arabeyre, Fearnley, Steiger, and Teather (1) survey the

early attempts to solve the airline pilot scheduling problem.

• •Most researchers separated the problem into two parts, (1)

assigning flight legs (one takeoff to one landing) to

rotations (a round trip of one to three days), and (2)

assigning pilots to the rotations. The first problem

attempted to minimize "dollar" costs, such as costs of

overnight lodging. The second problem aimed to distribute

pilot monthly flight time evenly.

Usually researchers and practitioners considered the

first problem to be the most difficult since it had to deal

with complicating constraints due to union rules, FAA

regulations, and company policies. Etcheberry (11) developed

an implicit enumeration algorithm, using a branch and bound

framework with Lagrangian relaxation, to solve large set

covering problems such as this one.

Rubin (36) solved the problem by reducing the number of

constraints as much as possible before solving it. He would

then consider subsets of the constraint matrix columns, find

the best solution over that subset, and repeat the process

until obtaining a satisfactory solution.

Marsten (26) developed an algorithm to solve the related

set partitioning problem. This algorithm ordered the
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APPENDIX A

FLIGHT TYPES

Air Combat Training (ACTT).

These are missions where similar types of aircraft practice "dogfight"

maneuvers against each other. Weapons launches and weapons parameters

are simulated and evaluated with gun camera film (42 of these flights

are required every 6 months).

Dissimilar Air Combat Training (DACT).

These missions are the same as ACTT, except they are flown against other

types of aircraft ( DACT flights are included in the ACTT requirements).

Airborn Gunnery Practice (DART).

This mission involves firing the 20MM cannon at a metal target (Dart)

which is towed 1500 feet behind another aircraft (1 or 2 of these

missions are required depending on the pilnt's experience level).

Intercept Training (DINT).

Intercept training involves using electronic means (e.g. RADAR) to find

and simulate firing on a target. Maneuvers are much more restricted

than in ACTT or DACT due to the limitations of the equipment (5 or 6 of

these missions are required depending on the pilot's experience level).

Night Intercept Training (NINT).

Night intercepts are the same as day intercepts, except they must be

performed at night (4 are required per 6 month period).

Air to Air Refueling (AARD).

A specially modified Boeing 707 or DC-10 carries fuel and the fighters

practice intercepting the "tanker" and taking on gas through an 18 foot

long "boom" on the tail end of the tanker (2 required).
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constraint matrix lexicographically before starting the

optimization. The algorithm then takes advantage of the

constraint structure to help fathom candidate problems

quickly.

Garfinkel and Nemhauser (15) developed a

set-partitioning procedure that reduces the problem size by

eliminating row and column vectors before applying their

algorithm. The algorithm then orders the data so the rows

with the least number of non-zero entries appear first, and

the co]*umns with the lowest costs are on the left. They ther

use an implicit enumeration algorithm that takes advantage of

this structure to build possible solutions. Pierce (33)

independently developed a similar algorithm.

Nicoletti (32) viewed the second problem (assignment of

pilots to rotations) as a network assignment problem and

successfully used the out-of-kilter method to find solutions.

The fighter pilot scheduling problem differs from the

airline scheduling problem in that all the fighter flights

originate and terminate at the same base. This eliminates

the need to develop rotations, although we still must deal

with crew rest and other regulations, just as the airlines

must.
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Night Air to Air Refueling (NAAR).

Night air to air refueling is the same as day refueling except that it

must be accomplished at night (I required).

Instrument Proficiency Flights (INST).

These flights are dedicated to practicing instrument approaches and

other instrument procedures. The are only required for non-experienced

pilots (2 every 6 months).

-9
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A possible formulation of the fighter pilot scheduling

problem is in the form of "k-duty period" scheduling problem.

This problem deals with schedules consisting of k independent

contiguous scheduling periods; for example, a schedule might

assign a person to work k four hour shifts each separated by

two hour breaks.

Shepardson (40) deals with this problem. The general

idea is to start with a proposed (yet feasible) subset of

schedules as the columns of a constraint matrix, with its

* rows being the jobs to be filled. -Pe thern separates the.

columns into new columns each with only one contiguous

scheduling period. For example; he would separate a 2-duty

* schedule containing two 4-hour shifts into two columns each

representing a single 4-hour shift. This solution strategy

is attractive because problems in which all schedules have a

single contiguous duty can be solved as network flow

problems.

He then adds extra side equations to ensure that if a

S.new column is in the solution, then all the new columns

associated with its column in the original problem

formulation, are also in the solution. In our example, if

one of the two columns with the 4-hour shifts is in the

solution, then they both must be in the solution. He then

dualizes these side equations and uses Lagrangian relaxation
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APPENDIX B

ADDITIONAL DUTIES

Supervisor of Flying (SOF).

Only Lt Colonels, Majors, and very senior Captians who are experienced

pilots may serve as SOF. The SOF sits in the control tower, and is

responsible for the entire flying operations of the Wing. He has the

authority to cancel flights due to weather or other circumstances. He

also is there to assist any aircraft in time of an emergency, since he

can call on other aircraft, fire trucks, and other resources for help.

Runway Supervisory Officer (RSO).

All MR pilots are qualified to serve as RSO. SOF's are qualified, but do

not serve as RSO. The RSO serves in a special building near the end of

the runway. He ensures the landing patterns are safe and that everyone

lands with their landing gear down. He can also assist in emergencies

by looking over the emergency aircraft for obvious exterior problems

when it flies by.

Range Training Officer (RTO).

RTO's must be MR and have some experience. Approximately half the pilots

are qualified to be RTO's. The RTO monitors flights which fly on a range

where ground stations receive flight information from aircraft and feed

the information into a computer. The computer then displays the flight

on a video screen. The RTO can see a "God's eye" view of the live action

and warn pilots of any dangers. The information is stored, and can be

replayed in the flight debrief. The RTO monitors the live flight for

safety, simulates missle launches in the computer, and relates the misle

results to the fliers.
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methods to solve the problem.

4.2 Lagrangian Relaxation

In problems with many complicating constraints,

Lagrangian relaxation techniques that exploit underlying

problem structure (like the single-duty problem that can be

solved as a network flow problem) have so far yielded very

good results for a wide variety of applications. Fisher

(12), Magnanti (25), and Shapiro (391 all give good surveys

of Lagrangian relaxation methods, and mention a number of

application areas.

Lagrangian relaxation methods attempt to simplify the

problem by dualizing some constraints, multiplying them by

Lagrange multipliers, and adding them to the objective

function. Given a set of multipliers, the relatively easy

relaxed problem is solved. Then given the new solution to

the relaxed problem, we solve for new multipliers. (In

section 5.2 we describe the multiplier selection procedure in

more detail.) we can embed this method into a branch and

bound framework to systematically exhaist all possibilities,

and find the optimal solution. (See (7) and (12) for an

explanation of branch and bound methodology.)
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APPENDIX C

COMPUTER CODES

These codes were written in FORTRAN 77 for the IBM personal computer.

The first program converts the raw data from the data files into the

cost and feasibility matrices.

The second program is the optimization program that takes the cost and

feasibility data and outputs the optimal schedule.

The third program is a short program to format the output as an easy

to read document.
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Several methods have been proposed to solve for the

Lagrange multipliers. The most popular method is subgradient

optimization. The method starts with a proposed solution for

the multipliers, then uses a subgradient of that solution to

move to a better solution. Held, Wolfe, and Crowder (18)

give a comprehensive explanation and evaluation of

subgradient optimization. Other methods include generalized

linear programming (25), the BOXSTEP method (19), dual ascent

(10), and so called mulLiplier adjustment methods (10,13).

None of these methods has performed as well as subgradient

optimization so far on a wide variety of problems, though

multiplier adjustment methods have proved to be successful on

facility location problems (Erlenkotter [10]) and generalized

assignment problems (13).

Ross and Soland (35) proposed a heuristic for finding

multipliers when solving the generalized assignment problem.

They relax the supply node bounds and solve the relaxed

assignment problem. Their method then assigns multipliers

based on the minimum penalty (increase in cost) incurred to

make the relaxed solution feasible. For each supply node

whose supply bound is exceeded, they find a new assignment

that makes that node supply feasible with minimal cost

increase. The increase in cost for that node is its new

multiplier. These multiplier problems are in the form of

knapsack problems (i.e. integer programs with only one
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C.1 Program to Organize Raw Data into Problem Data

PROGRAM FILGEN
THIS PROGRAM TAKES THE RAW DATA FILES

AND PROCESSES THEM TO DATA THE PILOT
OPTIMIZATION PROGRAM CAN USE.
INTEGER*2 FEAS(1200),P(30,2),FPOINT(150) ,C(30, 150),

*ACC(30,9) ,AVL(30. 10,4) ,REQ(3,9) ,S(150,4) ,SCH(150,3),
*N(0gNDY5,NPLNL,,,,LJvAIL
INTEGER*4 BIG
CHARACTER*4 PC(30,2) qT(150,2)

.7 DATA BIG/3200/

OPEN THE DATA FILES

OPEN(1qFILE=IPILOT.DAT' ,STATUS='OLD')
OPEN(2,FILE-'ACClMP.DAT' 4STATUS-'OLD')
OPEN(3,FILE='AVAIL.DAT' qSTATUS-l'OLD')
OPEN(4,FILE='REQMNT. DAT' ,STATUS-'OLD')
OPEN(5,FILE=' SCHED. DAT' .STATUS='OLD')
OPEN(6,FILE='COST.DAT' qSTATUS='NEW')
OPEN(7,FILE='FEAS.DAT' qSTATUS='NEW')

READ INTO THE PROGRAM THE RAW DATA FILES

READ(1.,1000) NPIL
1000 FORMAT (/115)

DO 5 I1=1.,NJPL.
READ(1,1010) (P(I.J),Jlq,2)q(PC(IvJ),J=1q2)

10)10 FORMAT(1OXi2I5,3XA2,4XqAl)
5 CONTINUE

READ(2,1020) (ACC(1jJ),J=1,9)
1020 FORMAT(//IOX,915)

DO 6 I=25NPIL
READ(2,1025) (ACC(I.,J),J=1,9)

1025 FORMAT(10X,915)
6 CONTINUE

READ(3,I1030) NE(1)

1030 FORMAT(//10X, IS)
IF(NE(1).E0.0) GOTO 8
DO 7 J=1,NE(l)
READ(3,1035) (AVL(1.JgK),K=1,4)

1035 FORMAT(15Xq I3, I7,13,17)
7 CONTINUE
8 CONTINUE
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constraint). Until multiplier adjustment methods were

developed, their method seemed to be faster than any other

for solving generalized assignment problems, their advantage



DO 10 I=2,NPIL
READ(30'(lC)Xq15)-) NE(I)
IF(NE(I)..EQ?.) SOTO 10
DO 9 J=1,NE(I)
READ(3,1035) (AVL(I,J.K),K=1,4)

9 CONTINUE
10 CONTINUE

READ(4..1050) (REQ(1,J),J~14 9)
1050 FORMAT(//i0X,9I5)

DO 20 1=2,~3
READ(4.1055) (REQ(I,J),J=1,9)

1055 FORMAT (10X,915)
20 CONTINUE

READ(5,1060) NFLT
1060 FORMAT(//I5)

READ(5, 1065) (ENDDAY(I). 1=1,5)
1065 FORMAT(5I5)

DO 50 I=1,NFLT
READ(5, 1070) ((,).=,)((,).14

1070 FORMAT(6X,A4,3X,A2, 15,13,I 2q15)
50 CONTINUE

END OF READING PORTION OF THE PROGRAM

MAIN BODY OF THE PROGRAM

WRITE(6, 1100) NPIL,NFLT

1100 FORMAl (1X,215)

SLI=0
DO 65 I=1,NPIL
SLI=SLI+P(I,2)
UL=P(I, 1)-P (I, 2)
WRITE(691110) P(I,1),UL

1110 FORMAT(1X,215)
65 CONTINUE

WRITE(6, 1110) NFLT-SLI,NFLT--SLI

CALL ARCMAT(NFLT,NPIL,ACCALREQ.PC,T,
*NE,.SCH,S6,P, C)

DO 70 J=1,,NFLT4-NPIL
WRITE(6. 1115) (C(I,J), I=1,NPIL+1)

1115 FORMAT(1X,815)
70 CONTINUE
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DEVELOP THE FEASIBILITY MATRIX

NF=0
DO 130 3=19NFLT
FPOINT (3)=NF+1
MAX=J.30
IF (MAX. GT. NFLT) MAX=NFLT
DO 90 K=J,,MAX
IF(SCH(Jq3) .GE..SCH(K, 1)) THEN
NF=NF~1
FEAS (NF) =1
ELSE
K=MA X
ENDIF

90 CONTINUE
* CREW DUTY DAYS

J1=ENDDAY (S(3, 4>)
DO 100 K=J1-12, 31
IF ((SCH(3,1)+1200).LT..SCH(K,2)) THEN
NF=NF+ 1
FEAS (NF)"K
ENDIF

100 CONTINUE
CREW NIGHTS

IF(S(J,4).EQ.4) GOTO 130)



Pilot 1l .. .... Pilot M

Mode balance

equations

Time overlap
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Figure 5-la

Problem Structure
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THIS SUBROUTINE DEVELOPS THE ARC MATRIX

SUBROUTINE ARCMAT(NFLT,NPIL,ACC,AVL,REQ,PC,
T .NE 2,SCH, S. P, C)
INTEGER*2 NFLT,NPIL..ACC(30vl),C(30,i)
INTEGER*2 AVL(30.10,1),REQ(3q1),.NE(i)

CHARACTER*4 PC (30,1) ,T (15091)

INTEER*2DAY15DAY29 I..JK1,T19T2,BTIMEETIME

DATA BIG/3200/

DO 150 I=i,NPIL+1
DO 140 J=i,NFLT+NPIL
C (I,3) =3200

140 CONTINUE
150 CONTINUE

DO 250 3=ivNFLT
DAY1= (S (3.4 -1) *2400
SCH(J, i)=( (S(J,2)-2)*i00)'DAYI+S(J,3)
SCH(J,3)=((S(J..2)+3)*100)+DAYI+S(J,3)
SCH(J,2)=( (S(J.2)+i)*100)+DAYI
EDS(JW, 3) +30
IF(ED .GE. 60) THEN
ED=ED-60
SCH (3 2) =SCH (3 2) +100
ENDIF
SCH (392) =SCH (3,2) +ED

IFT(,i).~.ACY')THEN
T1=2
ELSEIF(T(311).EQ.'DACT') THEN
Ti =3
ELSEIF(T(Jv1).E..'DART') THEN
Ti =4
ELSEIF(T(J.1) .EQ. 'NINT') THEN
Ti =5
ELSEIF(T(J,1).EQ.'DINT') THEN
Ti=6
ELSEIF(T(J,1).EQ.'INST') THEN
Ti =7
ELSEIF(T(3.1).EQ.'AARD') THEN
Ti=8
ELSE
T1=9
END IF
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DO 230 IrnlNPIL
U 1
IF ((PC(Ivl).EQ.'WG') .AND. (T(31 2) .EQ. 'FL')) SOTO 230
DO 200 Kl=l,NE(I)
DAY2-(AL(IiKlql)-l)*2400
BTIME=DAY2+AVL (IKl, 2)
ETIME=((AVL(IK193)-l)*2400)+AVL(IKl,4)
IF ((ETIME..GT.SCH(J, l)).AND.(BTIME..LT..SCH(J,.3))) THEN
U=0
K1=NE (I)
END IF

200 CONTINUE

IF (U .EQ. 1) THEN
IF (PC(I,.2).EQ.'-N') THEN
T2=1
ELSEIF (PC(Iq2).EQ.'E') THEN
T2=2
ELSE
T2=3
ENDIF
IF((REQ(T2,Tl)..EQ.0).AND. (T2.NE.3)) THEN
C (1,J)B I G
ELSEIF(UREQ(T2,T1).EQ.0).AND. (T2.EQ.3)) THEN
C(IJ)=(3*(ACC(I,1)*100)/REQ(T2,1))+5
ELSE

ENDIF

* C(19J)-C(I,J)*2

23 CNINU
230 CONTINUE

DO 260 I=19NPIL
C(NPIL+lqNFLT+I)=((ACC(I,1)*100)/REQ(T2,l))+5
C(I,NFLT+I)=0

260 CONTINUE
RETURN
END
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DAY=0
N= 1

40 CONTINUE
* -~ DAY=DAY-'-

WRITE(4,1100) DAY

PER =0
FLT=O

50 CONTINUE
* PER=PER+1

WRITE(4,1110) PER
1110 FORMAT('0',' PERIOD ',12)
60 CONTINUE

FLT=FLT+ 1
WRITE(411120) FLT

1120 FORMAT('0'gi'FLIGHT'q 12)
WRITE(4,1130) TVPE(N)

1130 FORMAT('+',2XA5)
WRITE(4..1140) FLTN(N,2)

1140 FORMAT(1+' ,2X, .I5)
70 CONTINUE

WRITE(44 1150) PNAME(X (N))
1150 FORMAT('+',2XA10)

IF(N.EO..NFLT) SOTO 80
N=N+I
IF(FLTN (N-i .3) .EQ.FLTN(N,3)) SOTO 50
IF(FLTN(N-1..4).EQ.FLTN(N.4)) SOTO 60
IF(FLTN(N-1,5).EQ.FLTN(N,5)) SOTO 70
GOTO 40

80 CONTINUE
STOP
END
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line and the staircase within the matrix. The shaded "bumps"

represent the crew rest constraints that link one day's

schedule to the next. If the overnight crew rest constraints

weren't present, the subproblems would separate further into

daily subproblems. For example, figure 5-ic shows the time

constraints for one pilot in the example problem developed in

section 5.3. The arrow shows the "bump" resulting from the

overnight crew rest constraint. If flights 3 and 4 didn't

conflict, then the constraints for day 1 and day 2 would be

separable.

5.2 Lagrangian Relaxation

We could conceivably attempt to use general purpose

integer programming algorithms to solve this problem, but

because of the complexity of the time constraints, these

methods probably would not be very efficient. This brute

force approach does not take advantage of the network

structure in the common constraints, which we can exploit to

solve the problem much more efficiently. By using a

- Lagrangian relaxation algorithm, we can take advantage of the

network structure and decrease our solution times.

Fisher (12), Magnanti (25), and Shapiro (39) give a good

description of the Lagrangian technique and give many
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.4 C.2 Optimization Program

PROG~RAM SOLL'TN

INTEGER*4 LBqLEBSTARqBIONE6,C(10,35)4 C1(10,35)
INTEGER*4 Ri (10) ,K1(35),R2(35),M(3)
INTEGER*2 NPILNFL-TITERTAGIJKKKqK2,K3,K4
INTEGER*2 Do,D1,D2,SOS2,FP5 P1,MOM1.,QXOR
INTEGER*2 S(10,2) ,A(10,35)
INTEGER*2 D(35,2) ,R3(35) qLYAR (2)
INTEGER*2 XSTAR(45,2)qXANDY(45,2)qS1(45.2),Y(45,2)
INTEGER*4 ,J (7) *SUMP,PJMAX. COSTN MCOST
INTEGER*2 FFEAS. BRANCH, FLAGS FFLAG, NEWNAX
INTEGER*2 NYV LLV,PVAR(2),SIP(7,7)
IN'TEGERU2 X0NE(7) gFEAS"7,7) sNOIEMSO!-.(7)
INTEGER*2 TSOL(7) .FM(7),BFEAS(7)qFPOINT(35)
INTEGER*2 F(80) 4LYRCPR0I3(3,300),NF.ISTART,END,QO

DATA BIG/3200/
DATA NEG /-1o000/
DATA LBSTAR/ 100000/
DATA LYR/O/
DATA FFEA9/1/

OPEN THE FILES

OPEN (1 qFILE='COST. DAT',qSTATUS='OLD')
OPEN(2,FILE='OUTPUT.DAT',STATUS='NEW')

61 OPEN(3..FILE='FEAS.DAT' ,STATUS='OLD')
-OPEN (4q FILE='BIP. DAT',STATUS= NEW' )

READ IN THE PROBLEM DATA

* 9000 FORMAT(lXAq 15)
READ(1, 1000) NPILqNFLT

1000) FORMAT(1X5 2I5)
S2=NPIL+1
D1=NFLT+NPIL
So=(:
D0=0o
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citations to applications of this methodology. We will give

a general overview here as it relates to the fighter pilot

problem.

Lagrangian relaxation is used to provide bounds in a

branch and bound algorithm by dualizing some of the

constraints. Typically, this procedure is used by

constructing a Lagrangian problem that is much easier to

solve than the original problem.

In. our case we can dualiz the node balance constraints,

associating Lagrange multipliers vj with the sink node

equations, and multipliers wi with the supply node equations,

giving the "Lagrangian relaxation" problem

Z(v,w) =min Z i Zj(cijxi,) + Zjvj(bj-Ziaijxij) +

ZiW1  (u, - Zjai3x1 j) (5.1)

subject to

ZJ fikJXiJ 1 k = 1,..., N, all i (5.2)

xiJ integer. (5.3)

We can rewrite the objective function as

60



DO 10 I=1,NPIL
READ(14 1010) 6(Iq 1) D(NFLT+I, 1)
D(NFLT+I,2)=D(NFLT+I, 1)
6(1,2) =6(I Il)

1010 FORMtAT(1X,2I5)
10 CONTINUE

READ(14 1010) S(S2, 1) S(S2,2)

DO 20 J=14 Dl
READ(1, 1020, END=20) (C(1 4 3),11I,S2c)

1020 FORMAT(1X,8I5)
DO 18 [-::14lS2
Cl (KqJ)=C(K,J)

18 CONTINUE
20 CONTINUE

DO 22 I=1,NFLT
D (I 1 )=1
D (1.2) =1

22 CONTINUE

DO 25 I=1.,35,5
READ(3,-(iX,515)') (FP(INT(I+J),J=0,4)

25 CONTINUE
DO 30 1I=INF,5

READ(3,'(1X,5I5)',END=30) (F(ItJ) ,J=0,4)
30 CONT INUE

INITIA~L SOLUTION

DO 70 I=1qNPIL
DO 60 J=I,NFLT,NPIL

6 1(Kq ) =
61 (K 42)=J
D2=D2+ 1
A (1,J ) =D (, 2)
S ( I2) =S(I 1 2)-D(J,2)
D (3 2) =0

KK+ 1
60 CONTINUE

Si (P.*: i)=I
Si (K,2)=NFLT+I
D24=D 2-'1
A (I, NFLT4I ) =S(1.,2)
D (NFLT+I 2)=:D (NFLT+I 2)-S (I. 2)
S (1. 2) =0
P.'.= K+ 1

70: CONl I NUE
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Z(v,w) =min i j(c,j-(w1 + vj)aij)xi +

( -l vjb3  + Ziwiui). (5.4)

The objective function and constraints (5.2) and (5.3) now

separate into M different set covering problems, one for each

pilot.

We know that for any solution vector, x', which solves

the node balance equations is a candidate solution to (5.1)

and therefore

Z(v,w) :5 Zcx *+Zv(b -Zax*)+Zw(u -Zax*), (5.5)

where the summations are over the appropriate indices. If x*

is optimal (or even just feasible) to (BIP), then since the

equalities in (BIP) must be satisfied, the second and third

terms in (5.5) must be zero and, therefore, Z(v,w) S Zcx*.

We know that cx* = Z, therefore

Z(v,w) Z.

A logical goal is to find the values of v and w that maximize

Z(v,w), and therefore give us the sharpest lower bound for

the value Z of the original problem.
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DO 80 J=NFLT+l..Dl+D0)
61 (K,l)S2
SI (K,2)=3

* D2=D2+1
A (S2, J)=D(W, 2)
S(S2,2)6S(S2,2)-D(Jq2)
D (312) =0
K=K+ 1

80 CONTINUE

* TAG=0

START TRANSPORTATION ALGORITHM

90 CONTINUE
TAG=TAG+1

DUAL VARIABLE CALCULATION

ITER=0
1140 CONTINUE

ITER=ITER+i
WRITE(4, 1150) ITER

1150 FORMAT(1X,' ITERATION',IS)
DO 1160) IlD+D)

Ki (I) =NEG
R2 (I) =10000

1160 CONTINUE
DO 1190 I=1 4 S2+S0)

Ri (I)=NEG
1190 CONYINUE

R=i
K=1
Ri (1)=0
Ki (Si (1,2) )C(S1 l. 1),Sl1(1,2))
GOTO 1240
Ri (S2)=0
DO 1200 I=D24 Di+2-S2. -1

IF(Sl(I,1).ED.S2) THEN
K.i (Si (I,2)) =C(Si (I 1) q 617q2))
K=K+i
DO 1195 P'=1 4 D2f

IF (Si (K,2).*E). 61(1 *2)) THEN
Ri (Si (K 1) )=C (61(I 1) 61(1,2))-441(1 (S61(1. 2))
R=R+l

ENDIF
1195 CONTINUE

ENDIF
1 20:0 CONT INUlE
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There are a few methods available for solving for v or w

in maximizing Z(v,w). These include subgradient optimization

(18), generalized linear programming (for the LP dual problem

of maximizing Z(v,w)) (25), and the multiplier adjustment

method (10,13). Subgradient optimization has been the

dominant procedure used so far, but the new multiplier

adjustment method used by Erlenkotter (10) and by Fisher, et

al. (13) seems to work much faster in some applications.

The multiplier adjustment method starts with any values

of the Lagrange multipliers v and w, which might give a

fairly loose lower bound on Z. Then by adjusting each

multiplier one by one, we obtain a feasible solution with a

much sharper lower bound. This sharper lower bound tends to

fathom candidate problems faster than the Ross and Soland

method, which we discuss next. See the references for

explanations of the procedures discussed so iar.

In the next section we discuss a branch and bound

method, related to Lagrangian relaxation, developed by Ross

and Soland.

5.3 Branch and Bound Algorithm

To solve (BIP), we will use a relaxation algorithm
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1240 CONTINUE
I=1

1250) CONTINUE

IF(Kl(S1(I ,2)).*NE. NEG) 6010 1300
IF(Rl(S1(Iql)).EQ.NEG) GOTO 1330

K=K+ 1
1300 CONTINUE

IF(R1(Sl(l 4 1)).NE.NEG) GOTO 1330~
RI (Si (I,1) )C(S1 (l 1) qS1(I,2) )-K1(61(1,2))
R=R+l

1330 CONTINUE
IF(I.LT.D2) GOTO 1250
IF(K.LT.D1+DO) GOTO 1240
IF(R.LT.S2+SO) 6010 1240

FIND A VARIABLE TO PIVOT ON

I=1

DO 1500 R=1..S2+SO
DO 1490 K=I,D1+DO

IF(R.NE.Sl1.1)) GOTO 1450
M IF(K.NE.S1(I,2)) 6010 1450

.*1 IF( (A(R,K) .EQ.0) .AND.
* (R2(K) *GT.C(R,K)-R1 (R)-K1 I(K))) THEN

R3 (K) =R
END IF
1=I+1
6010 1490

1450 CONTINUE
IF (R2 (K) .61.C (R, K)-R (R) --Ki IK-)) THE-N

R3 (K) =R
ENDIF
IF(M(1) .LT.C(RK)-R1(R)-K1 (K)) 6010 1490
M(1)=C(R,K)-R1 (R)-K1 (K)
M (2) =R
M (3:) =K

1490 CONTINUE
1500 CONTINUE

IF(M(1).GE.0) 6010 2790
WRITE(4,1502) ITER,M(2) .M(3)

1502 FORMAT(1X,'ITER'qI5,'PIVOT',2I5)

FIND A CLOSED PATH FROM R TO t-*

Y(1. 1)=M(2)
V (1 ,2) =M(3)
0=1
IF(M(2).EL,.S2*SO) 6010 1960
M(:)=y (Q, 1)
M1=1
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adapted from Ross and Soland (35). Their algorithm is

designed to solve the generalized assignment problem. Our

problem structure is such that we can use a slightly modified

version of the the algorithm.

5.3.1 Branch and Bound--General

Before discussing the specific aspects of the Ross and

Soland method, we review the general principles of branch and

bound methods. The general idea is to implicitly enumerate

all possible solutions to a problem (such as (BIP)) by

cutting the problem in half at each branching step, and then

finding the optimal feasible solution for each half.

For instance, we solve a relaxed problem, such as (NET),

and find the resulting x' to be infeasible to (BIP). We

select a variable, Xoranch, to branch on, and split all

possible solutions into 2 sets. One set will include all

possibilities where Xbranch = 1, and the other set will

include all possibilities where Xbr.nCt = 0.

We then solve (NET) again with the stipulation that

Xoranch = 1. If the resulting solution is feasible to (BIP)

then we know we have the best solution for the xbranch = 1

branch, and we can focus attention on the solutions-where
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ROW SEARCH

1610 CONTINUE
I =0

1620 CONTINUE

IF(S1(I,1).GT.MO) GO0TO 1670
IF(S1(I,1).LT.M0) GOTO 1660
IF(SI1,2) .GE.M1) 6OTO 1720

1660 CONTINUE
IF(I.LT.D2) GOTO 1620

1670 CONTINUE
IF(Q.NE.1) GOTO 1830
WRITE (4q 6060)

8080 FORMAT(1XW 'DEGENERATE MATRIX')
STOP 'DEGEN'
CHECK IF ALREADY USED

1720 CONTINUE
* X0=0

DO 1780 J=1,0
IF(S1(I4 1).NE.Y(J4 1)) GoT 1780
IF(Sl(Iq2).NE.Y(Jq2)) GOTO 1780)
X0=1

1780 CONTINUE
IF(XO.EQ.0) GOTO 1890

IF(M1.LT.D1+DO) GOTO 1660

1930: CONhTINUE
P=Y (0,2)
P1=Y(0, j)+1
Y(0Q 1)=0
Y (C., 2) =0
Q=0-1
GOTO 2000

1890 CONTINUE

Y(0,2)=S (I,2)
IF(Q.LE.2) GOTO 1960
IF(Y(Q4 2).EQ.M(3)) GOTO 2340



Xbranch = 0.

We then go to (NET) again and solve it when we set

Xbranch = 0. Suppose the new solution is not feasible to

(BIP). Then we can repeat the branching process on another

" separation variable. We still include the restriction of

Xbranch = 0 along with any new restrictions.

If during this process, any solution to the relaxed

problem has an objective value greater than the value of the

best feasible solution found so far, we can stop looking for

the optimal solution on that the search on a branch. This

process of ending branch is called fathoming.

-* To find the optimum solution to (BIP), we use the branch

and bound method until we have fathomed all possible

branches. The lowest cost, feasible solution will then be

the optimal solution to (BIP).

5.3.2 Ross and Soland Method

This algorithm utilizes a branch and bound framework

that first relaxes the time overlap constraints and then

solves the network constraints to obtain a candidate solution

x'. It then forms small integer problems from the violated

time constraints, and solves them to find lower bounds and
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COLUMN SEARCH

1q60 CONTINUE
P=Y (U.2)

2000 CONTINUE
K=O

2010 CONTINUE
K=K+1
IF(Sl(K,1).LT.P1) GOTO 2040

20)30 CONTINUE
IF(S1(K,2).EQ.P) GOTO 2120

2040 CONTINUE
IF(K.LT.D2) GOTO 2010

2050 CONTINUE
MO= Y (Q,1I)
Ml=Y (0,2) +1
V(Q, 1)-u
Y (Q, 2) =0

O=-1
GOTO 1610

CHECK FOR UNIQUE PATH SQUARE

2120 CONTINUE

DO 2180 J=1,0
IF (S (Kl ). NE.Y(J~1)) GOTO 2180
IF (SI (K.2).NEY 1,) GOTO 2180

213?) C014TINUE
IF(X0..EQ.0) GOTO 2250
P1=61 (K, 1) +1
IF(Pl.LE.S2'S0) GOTO 2040
GOTO 2050

ADD STONE SQUARE TO PATH

F:2250 CONTINUE
Y(0,2)=S1 (K2)
IF(Q.LE.2) GOTO 2300
IF(Y(0,1).EQ.M(2)) GOTO 2340

2300 CONTINUE
P1=Y (0,1) +1
MO=Y (Q,1)

GOTO 1610
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separation variables to use in the branching process. We use

the separation variables to form candidate problems in which

we divide the possibilities in half by adding the constraint

that the separation variable must be I in our next solution.

If the next solution to (NET) (or (BIP)) is feasible, then we

try the other half of the possibilities (i.e. solve (NET)

when the separation variable is fixed at 0). We first

discuss the procedure, then illustrate it with the small

example problem formulated in chapter 3.

The relaxed problem is

ZR = min Z, .J cijxij (5.6)

subject to

=I aijxij bj all j (5.7)

Ex 5 =s Zjb3 - Zili (5.8)

(NET) -i x1j + x5 j, - u1  - li (5.9)

j aijxij= ui all i (5.10)

x1 j, xlj,, xsj, integer (5.11)

which is a min-cost flow transportation problem. Later in
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7.*7.7.7

FIND THE LEAST FLOW CHANGE

2340 CONTINUE
XO=A (Y (2, 1) , Y (2, 2))
DO 2390 K=4,0,2

IF(X0.LEAY(K.1)Y(K,2))) GOTO 2390
XO=A(Y(K. 1) Y(K,2))

2390 CONTINUE

ADD AND SUBTRACT XO ALONG CLOSED PATH

2410 CONTINUE
P=O
DO 2450 K=1.Q,2

A(V(K, 1) Y(K,2) )=A(Y(K, 1> Y(Kw2) )+XO
2450 CONTINUE

DO 2630 K=2,0,2
A (V(K, 1),YV(K. 2)) =A (Y (K.1),YV(K 4 2)) -XO
IF(A(Y(K,1),Y(K.2)).GT.0) SOTO 2630
IF(XO:.EQ.0) GOTO 2500
IF((Y(K.I2).GT.NFLT).AND. (Y(Ki).LT.S2)) GOTO 2630

2500 CONTINUE

I=0
P=P+1
IF(P..GT.1) SOTO 263.0

2530 CONTINUE
1=I+l
IF (Si (I,1) NE.YV(K 4 I)) GOTO 2530
IF(S1(I,2).NE.Y(K,2)) GOTO 2530
IIRlITE(4,805Z") "'(K,1) ,Y(K -, ) , Y')

8050 FORMAT1IX,'-PivoT OUT,2I5,' FLOW=',15)
DO 2590 J=I,D2

61 (J,2)=S1 (3+1,2)
2590 CONTINUE

Si (D2, i)=0
Si (D2,2)=O
D2=D2-1

2630 CONTINUE

INSERT A NEW STONE SQUARE

1=0
2660 CONT INUE

I=I+1

IF(Y(1.1) .LT.S1 (I, 1)) GU-,TO 2700
IF(Y(1,2).GT.S1(I,2)) GOTO 2660

2700 CONT INUE
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the chapter we describe methods for solving (NET).

Let x' denote an optimum flow vector for (NET) and let

ZR denote its optimum objective value. If x" is feasible for

the time constraints, then it is optimal for the original

pilot scheduling problem (12).

If the solution x* to (NET) is infeasible to (BIP), we

can then form auxilary problems (subproblems) with the time

constraints. We will have one subproblem for each pilot i.

The objective of these subproblems is to find the minimum

cost reallocation of flights from pilot i to other pilots, so

that pilot i's schedule is feasible. By solving these

subproblems for all i, we will find a lower bound for Z in

(BIP). This lower bound will help fathom, the current

candidate problem, and help find a separation vari-ible (to

use for the next branch).

Let Eqj be the reduced cost of the pairing of pilot q to

flight j in x. Let Erj be the next larger reduced cost for

flight j, and define

oi Pj = {Crj - J}

then pj represents the minimum penalty for reassigning flight

j with respect to the solution x'. Also let

S= {j : = 1),

and
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DO 2730 J=D2,1,--l
Si (J+,1 1) =Si (L1 1)
Si (J+1,2)=S1(J,2)

2730 CONTINUE
Si (1, i) =Y (1, 1)

D2=D2+1
270SOTO 1140
270CONTINUE

IF(M(1).GE.0) THEN
WRITE (4, 6120)

6120 FORMAT(1X4 'SOLUTION IS OPTIMAL')
END IF

OPTIMAL SOLUTION, FIND LB

LB=0
DO 2600 I~lD2

IF(C(S1 (141) 4S1 (I,2>)).LE.0) THEN
COST=C1 (Si (I, 1) ,61( , 2))

ELSE
COST=C (Si (141) Si(I 2))

ENDIF
LB=LB+ (COST*A (Si (I, 1) 461(12)))

2600 CONTINUE
DO 2605 I=1.NPIL

LB=LB+ ((S (l,1)-D (NFLT+I 1)) *CI (14NFLT+I))
2805 CONTINUE

WRITE(4,6100) TAG.,ITER-1,LB
6100 FORMA- c.1X. TAG' ,I5.' ITER- ,I5,' LB=' , 11)

IF(LB.GT.BIG+100) GOTO 300
IF(TAG.GT.4o) SOTO 350)

THIS SEGMENT STARTS THE SIP SOLUTION PROCEDURE

NEWMA X= 0
FFLAG=0
I =0

410 CONTINUE
I=I+1
NONE=0
DO 415 K<=1,7

XONE (P) =
415 CONTINUE
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Yij = 1 if we reassign flight j from pilot i

to pilot r

0 otherwise.

Consider the problem

z= min Zj.L p3 yij (5.12)

subject to

(SIP 1 ) EJ f'ikjYj dik all k (5.13)

Y 1 0 or 1, (5.14)

where

di =i Xi 1

The value of dik is the minimum number of flights which must

be reassigned to satisfy constraint k. The solution, y',

this problem represents decisions to as to whether to let

pilot i keep flight j (i.e. y~j= 0), or to reassing flight j

to pilot r (i.e. y~j= 1).

If yj = 0, then pj is large, and we would want to keep

this pairing as it is. On the other hand, if yj = 1 and pj

is small, we will not be hurt much by reassigning flight j to

pilot r.

When we solve (SIP,) the resulting zi represents the
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3=0
420 CONTINUE

IF(Sl(3,l).EQ.I) THEN
XANDY(3, 1)=Sl (3.1)
XANDY(J.2)=S1 (342)
IF( (A(S1 (3,1) ,S1(3,2>) .GT.0) .AND.
* (S1(J,2).LE.NFLT)) THEN
NONE=NONE+ 1

4 XONE (NONE) =XANDY (342)
ENDIF
END IF
IF(S1(3,1).LE.I) S3OTO 420
WRITE(4, (1X,.715) ') (XONE(KK) ,KIK=1,7)

FILL THE SIP MATRIX

WRITE(4,9000)'START SIP GEN',I
DO 440 KK=1,7

MSOL (KK) =0
DO 430 K4=19~7

SIP (KKK14)=0
430 CONTINUE
440 CONTINUE

FLAG=0
KK=O

450 CONTINUE
KK=KK+ 1
START=FPOIINT (XDNE (1K))
END=FPOINT (XONE (H:) +1)
:F(1(.K.LT..'JONE) THEN
K4=KK

460 CONTINUE
1(4=1(4 +1
DO 470 K3=START+l,END-1

IF(F(K3) .EQ.XONE(K4)) THEN
FFLAG1l
FLAG1l

L ~SIP (KK * 14) =1
END IF

470 CONTINUE
IF(K4.LT.NONE) SOTO 460
ENDIF

r SIP (KKK)=1
WRITE(4. (lX,715) ) (SIP(KK,3) ,3=1,7)
IF(KK.LT.NDNE) GOTO 450
WRITE(44 9000)'END SIP MATRIX C'EN'41
WRIT'E(4,9o:o0) 'FLAG= .FLAG
IF(FLAG.EQ.0) GOTO 725
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minimum increase in cost by changing x" to make pilot i's

schedule feasible. The overall minimum penalty is Eiz,, so

a lower bound, LB, on (BIP) is

LB = ZR + Ziz i .

We can use LB to fathom nodes in the branch and bound

procedure (35).

As in Ross and Soland, we can use the solutions ytj to

suggest a new solution that tends to be feasible. To form

the new test solution, we start with the solution x* from

(NET). We then change the x corresponding to y~j = 1 to

zero, and set the corresponding variables variables Xrj to

one. If this new solution is feasible its objective value is

given by LB. The solution is also optimal for the candidate

problem we are investigating, since we found the minimum

increase in cost when solving the subproblems.

If the new solution is still infeasible, we need to find

a separation'variable (x,,). A logical choice is one of the

variables with y>j = 0. We choose to branch on the xjj with

the maximum pj for all i. When we branch we will set xij = 1

•  as the first candidate problem, and x, = 0 as the second.

5.3.3 Algorithm Summary
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FIND THE P3'S

P3MAX=-5
WRITE(4..9000)'START SIP SOLUTION' ..

* SUMPJ =0
NV=NONE
DO 500 3=1 NV

K2=XONE (3)
K3-R3 (K2)
PJ(J)=(C(K3,K12) Ri (13) -K<1(K2) )-(C(I,K2)-R1 (I)-Ki (12))
SUMPJ=SUMPJ+PJ (3)

500 CONT INUE
INITIALIZE FEAS
DO 520 K1 4 ,NY

DO 510 J=1,NV
FEAS (K,3) =0

3510 CONTINUE
520 CONTINUE

FILL IN FEAS
DO 550 J=I,N\V

525 CONT INUE
3=3+1

DO 540 L=1,NV
IF(SIP(L,J).EQ.1) THEN

DO 530 K=14 NV
IF(SIP(L,() EQ. 1) THEN

FEAS (3JK) =1
ENDIF

530 CONTINUE
END IF

v.40 cIONTIM~UE
IF(J.LT.NV) GOTO 525

550 CONTINUE

START THE BRANCHING PROCESS

3=0
555 CONTINUE

3=3+1
DO 560 K=14 NV

TSOL (I<)=O
560 CONTINUE

TSOL (3)=3
COST=PJ (3)
LV=J
FLAG= 0
DO 570 1<=1 4 NV

BFEAS (K) =FEASW(3K 1)
IF(EIFEAS(K) .EO.0)) THEN

FLAG=1
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To summarize the procedure, figure 5-2 gives the general

algorithm, in flow chart form, that we will use to solve the

fighter pilot scheduling problem. The following is the

written form of the algorithm.

Step 0: Initialize. Read in the data and let LB*

infinity.

Step 1: Solve (NET)-- using a min-cost network flow

algorithm to obtain x' and ZR.

Step 2: Test the solution. Test to see if x" is

feasible with respect to the time constraints. If it is

feasible or if ZR > LB* (the best bound so far)', then go to

step 6. Otherwise go to step 3.

Step 3: Solve SIP, for all i. Use an integer

programming algorithm to find y' and zi, and therefore LB for

the current candidate problem.

Step 4: Form a new problem--by changing the x variables

where y>j = 1 so that xi, =0 and xr = 1 (r as defined

previously). If this new problem is feasible go to step 6,

otherwise go to step 5.

Step 5: Select the separation variable. From the
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ENDIF
570 CONTINUE

IF(FLAG.EQ.0) GOTO 600
BRANCH=O

FORWARD BRANCH

575 CONTINUE
K=LY

580 CONTINUE
K=K+1
IF(E'FEAS(K) .EQ.0) THEN

BRANCH= I
TSQL (K)=1K
COST=CDST+PJ(K)
LY=K
FLAG='
DO 590 K4=K, NV

BFEAS (K4) =BFEAS (K4) +FEAS (K, K4)
IF(BFEAS(K4) .EQ.0) THEN

FLAG=l
END I F

590 CONTINUE
K=NV

END IF
IF(K..LT.NV) GOTO 580
IF((BRANCH.EQ.0).OR. (FLAG..EO2.0-)) GnTO 600
BRANCH-0
SOTO 575

BRANCH FATHOMED, CHECK FOR OPTIMUM

600 CONTINUE
IF (COST. GT. COSY> THEt;

MCOST-COST
DO 610 K=14 NY

IF(TSOL (K) .GT.(0) THEN
MSOL (K) =XONE (K)

ELSE
MSOL (K)=0

END IF
610 CONTINUE

END IF

BACKWARD BRANCH

4DO 620 K=LV+1qNV
BFEAS (K) =BFEAS (K) -FEAS (LY4 K)

620 CONTINUE
625 CONTINUE

IF(TSOL(LV).NE.0) SOTO 630
LV=LY-1
IF(LV.LE.0) GOTO 670
SOTO 625

117



START
Initialize

Solve

(NET)

x Is no
f asible? LB < IA ?

no es

o Ye,

Solve x is new

(SIP Ps incumbenti

Next
candidate

New roblem
solution p

feasible?
yes

no
All
nodes no+

fathomed?
S lect

sep:rating
variable

yes

Terminate

figure 5-2

Branch and Bound Flow Chart

70



630 CONTINUE
IF(LV.EQ.3) GOTO 670
TSOL(LV)=O
COST=COST-PJ (LV)
IF(LV.GE..NV) GOTO 600
BRANCH=O

* GOTO 575
670 CONTINUE

IF(J.LT.NY) GOTO 555

WE HAVE THE OPTIMAL SOLUTION FOR THIS I

WRITE(4,9000)'OPTIMUM FOR SIP',I
WRITE(4,' (1X,7I5)") (tNSQL(KK),KK=1,7)
3=0

690 CONTINUE

IF(MSOL (3).EQ.0) THEN
FLAG=0
KK=0

700 CONTINUE
KK=KK+ 1
IF((S1(KK,1).EO.I).AND.(S1(KK,2).EQ.XONE(J))) THEN

XANDV(KVK, 1)=R3(S1 (KK,2))
XANDY(KK,2)=S1 (KK,2)
FLAG=1

ENDIF
IF(FLAG.EO.1) GOTO 705
IF(KK.LT..D2) GOTO 700

705 CONTINUE
END IF
IF(J.L.ENV) GOTO 690

CALCULATE BOUND AND SEPARATION VARIABLE

LB=LB+SUMP3 -MCOST
DO 710 K=1,NV

FLAG-0
IF(MSOL(K).EQ.0) GOTO 710
IF(K.EQ.NV) THEN
DO 706 J=IqNV

IF(FEAS(JqK) .GT.0) THEN
FLAG=FLAG+1

ENDIF
706 CONTINUE

ELSE
DO 707 3=I.NY

IF(FEAS(K,J).GT.0) THEN
FLAG=FLAG+l

END IF
707 CONTINUE

END IF
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variables where yj = 0 select the one with the maximum pj.

Set xij = 1 and go to step 1.

Step 6: Test for optimality. If LB < LB" then the

current solution becomes the new incumbent solution, and let

LB* = LB. Go to step 7.

Step 7: Select the next candidate problem. Let the

last separation variable (xij) equal 0, and go to step 1. If

there are no more candidate problems, terminate.

This method can be interpreted as Lagrangian relaxation,

as the optimal shadow prices, v" and w*, from (NET) which

determine the reduced costs, c13 , can be, viewed as the

Lagrange multipliers.

5.3.4 Branch and Bound--Example

We will illustrate the procedure with a simplified

example. We consider the example posed in chapter 3, except

to help simplify the discussion, we will only use the first

four flights (requiring 6 pilots [figure 5-3a]). We assume

we have four pilots available, and can model the situation by

the network in figure 5-3b. Each pilot must fly at least

once, but no more than three times. Figure 5-3c specifies
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IF(FLAGULE.1) SOTO 710
J-0

708 CONTINUE
* 3J=-I-

IF( (CPROB(1.3) EQ. I) ..AND.
* (CPROB(2,J).EQ.XONE(K))) SOTO 710

IF(3.LT.LYR) SOTO 708
IF5(PJMAX.LT.PJ(K)) THEN

PJMAX-PJ (K)
PYAR (1)= I
PYAR (2) =XONE (K)
NEWMAX= 1

ENDIF
710 CONTINUE
725 CONTINUE

WRITE(4,8200) I
8200 FORMAT(1X, 'PILOT', 13, 'FATHOMED')

IF(I.LT.NPIL) GOTO 410
IF(FFLAG.EQ.0) GOTO 280
IF(NEWMAX..EQ.0) SOTO 300
IF( (LYAR(1) .EQ.PVAR(1)) .AMD
* (LYAR(2).EQ..PVAR(2))) GOTO 300

LVAR(I)=PVAR(1)
* LYAR (1)=PVAR (2)

TEST TO SEE IF XANDY IS FEASIBLE

FFLAG=O
1=0
K=O

210 CONTINUE

DO 215 R-1,7
FM (R) =0

215 CONTINUE
DO 220 J=1,D2

IF((XANDY(Jq1)..EQ.I).AND.(XANDV(Jq2).LE.NFLT)) THEN!

FM (K) =XANDY (3.2)
ENDIF

220 CONTINUE

KK=0
230 CONTINUE

KK=KK-1
START=FPOINT (FM (KK))
END-FPDINT(FM(KK)+1)
IF(KK.LT.K) THEN
K4=KK

240 CONTINUE
PK4=K4+ 1
K3=START
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250 CONTINUE
K3-=K3+ 1
IF(F(K3)..EQ..FM(K4)) THEN

FFLAG-1
KK=K
K3=END-1
K4=K

END IF
IF(K3.LT.END-1) SOTO 250
IF(K4.LT.K) SOTO 240
END IF
IF(KK.LT..K) SOTO 230
EF((I.LT.NPIL).AND).(FFLAG.EU.0)) GOTO 210
WRITE(4r.9000) 'FFLAG XANDY=' ,FFLAG
IF(FFLAG.EQ~l) GOTO 320

2 CHECK TO SEE IF XANDY IS OPTIMAL TO BIP

IF(LB.,LT.LBSTAR) THEN
LBSTAR=LB
D0 270 iJ=ID2

XSTAR (3.1)=XANDY (3, 1i
XSTAR (3.,2) =XANDY (3,2)

270 CONT INUE
ENDIF
lP(FFEAS.ED.l) SOTO 350
GOTO 300

CHECK IF Si IS OPTIMAL

280 CONTINUE
IF(133.LT.L.BSTAR) THEN

LE4STAR=LB
DO 290 J=1,D2

XSTAR(3, 1)=61 (3,1)
XSTAR(W, 2) =S1 W, 2)

290 CONTINUE
END IF
IF(FFEAS.EQ.1) SOTO 350

OVERALL BRANCH AND BOUND CONTROL

ELIMINATE VARIABLES

300 CONTINUE
WR ITE (4, B030) TAG

8030 FORMAT(1XCTAG',I5.' ELIMINATE VARS')
310 CONTINUE
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IF(LYR.EQ.0) GOTO 350
FLAG=0

lk IJ=CPROB (1,LYR)
K=CPROB (2, LYR)
IF(CPROB(3,qLYR) .EP.0) THEN

C(J,K)=C1 (J,K)
CPROB (1 LYR) =0
CPROB (2, LYR) =0
LYR=LYR-1
FLAG=1

ELSE
C (3 K) =BIG
CPROB (3, LYR) =0

END IF
IF(FLAG..EQ.1) GOTO 310
GOTO 90

ADD NEW VARIABLES

320 CONTINUE
WRITE(4.,8040) TAGPVAR(1) qPVAR(2)

6040 FORMAT(1Xq'TAG',l5,' ADD VAR',215)
LYR=LYR+l
CPROB (1 LYR) =PVAR (1)
CPROBt(2, LYR)=FPVAR (2)
CPROB (3, LYR) = 1
C (FVAR (1),PYAR (2) )=-3200
ADD ZERO VARIABLES
IF(PVAR(2) .LT. 11) THEN

ELSE
QQ= 10

ENDIF
DO 327 K=PVAR(2)-OQQPVAR(2)-l

DO 32 tl=FPOINT (K) +1.FPOINT (K+1) -1
IF(F(cJ).EQ.PVAR(2)) THEN

LYR=LYR+1
CPROB4(1, LYR) =PVAR ( )
CPROB (24 LYR) -K
CPROI(3. LYR) =0
C (PVAR (1), K)=BIG

ENDIF
3~23 CONTINUE
327 CONTINUE

12l



Day 1 Flight 1 Flight 2 Flight 3

Brief tim 0515 0930 1400

Takeoff time 0715 1130 1600

Type flight Air Combat DART light Inter

2 pilots 1 pilot 1 pilot
required required required

Land time 0830 1245 1715

End debrief time 1015 1430 190

Day 2 Flight 4

Brief time 0500

Takeoff time 0700

Type flight Air Refuel

2 pilots
required

Land time 0815

End debrief time 1000

Figure 5-3b

Example Problem Schedule
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START=FPOINT (PVAR (2))
END=FPOINT (PVAR (2) +1)
DO 330 J=START+1qEND-1

* I=PVAR(l)
LYR=LYR-
CPROB (1 4LYR) =I
CPROB(2,LYR)=F(J)
CPROBI(3,~LYR) =0
C(IqF(J) )BIG

330 CONT INLUE
GOTO 90

OPTIMAL SOLUTION IS REACHED

350 CONTINUE
DO 360 1=1D2

IF( (A(XSTfAR(Iq 1) qXSTPAR(Iq2) ) ,T.0) .AND.
* (XSTAR(1,2).LE.NFLT)) THEN

WRITE(2, (IX 43I10)') XSTAR(I. 1) XSTIAR(Iq2),
* ~A(XSTfAR(I4l),XSTAR(Iq2))

ENDIF
360) CONT INUE

LE4=0
DO 370 I=1.D2

LB=LB+ (CI (XSTIR (I. 1) XSTAR (142) ) *(XSTAW (14 ),
XSTAR (, 2)l

370 CONTINUE
WRITE (24 8000) LBSTAR

80C)0 FORMfAT(lXIIlC7 = LBSTAR7)
WRITE(2,8010) TAIG

8010 FORMAT(lXI1104' =NO. OF ITERATIONS')
STOP
END
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C.3 Program to Format Schedule

PROGRAM OUTPUT

INTEGER*2 FIL(30C0q2)qFLTN(150,5),NUMFX(I50)
INTEGER*2 FLABNPILNFLTiPERDAYvFLTN
CHARACTER*4 TYPE(150) ,PNAME(33)

OPEN(l4 FILE='OUTPUT.DAT' ,STATUS='OLD')
OPEN(2,FILE='PILOT.DAT' qSTATUS='OLD')
OPEN (3,FILE='SCHED.DAT' ,STATU=' OLD')
OPEN(4,FILE='BYNAME.DAT' qSTATUS='NEW')

READ(2,1000) NPIL
1000 FORMAT (f/I5)

DO 10 I=14 NPIL
READ(2, 102o) PNAME(I)

1020 FORMAT (A10)
10 CONTINUE

DO 20 J=IqNFLT
READ(3. 1030) TYPE(J),(FLTN(J,K) d(=1,5)

1030 FORMAT(3XA5,5X,5I5)
20 CONTINUE

DO 30 K=1qNFLT
REAP (1, 1040) FIL (K.1). FIL (K 2)

1040 FORMAT(1X,2I10)
30 CONTINUE

F LT = C
35 CONTINUE

FLT=FLTI-
K=O
FLAG=O

37 CONTINUE
K=Y( 1
IF(FIL(K, 2) .EO..FLT) THEN

X (FLT)-FIL (Kq 1)
FLAG=1

ENDIF
IF(FLAG.EQ-1) GOTO 35
IF(J".LT.NFLT) GOTO 37
IF(FLT.LT.NFLT) GOTO 35
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the cost (c~j) and time overlap (fkj) matricies, that we

developed in chapter 3. An "X" in the cost matrix means that

S. the pilot cannot fly that flight (due to other obligations).

Step 0: Initialize. LB* = infinity.

Step 1: The optimal solution is the set of pairings

shoun circled in figure 5-4a. ZR = 9.

Step 2: Pilot 4's schedule is infeasible since he is to

fly both flights 1 and 2, so we go to step 3.

Step 3: We find the pj's by looking at flgure 5-4a and

noting that to reassign flight 1 from pil9t 4 to pilot 1

would cost nothing, and to reassign flight 2 to pilot 3 would

cost 2 units. We then solve SIP 4 and find y;,= 1, and y;2= 0

(figure 5-4b). LB = 9.

Step 4: The new solution, after reassigning flight 1,

is still not feasible.

Step 5: We choose x4 2 as the separation variable, so we

set x42 = 1, x4 1 = 0, (we know x4 1 cannot equal 1 in a

feasible solution). Go to step 1.
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= 10.

Step 4: Reassigning flight 1 to pilot 2 yields a
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Step 6: 10 is less than infinity, so LB* =,10, and the
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Step 7: There are no more candidate problems, so

terminate. The optimal solution is x 2 1 = 1, x 3 1 = 1, x 4 2 =

1, x1 3 = 1, x24 = 1, and x44 = 1, with Z = 10.

This example showed how we may be able to find a

feasible solution by reassigning flights when y* = 1, and

that we can fathom candidate problems by use of the best

lower bound. Figure 5-7 gives a picture of how we used the

branch and bound process.

5.4 Network Problem

To find candidate solutions for x to use in the

(SIPj)'s, we must solve an assignment type min-cost network

flow problem. We have three possible solution methods: the

primal simplex (7), the primal-dual (5,6), and the

out-of-kilter (14). See the references for explanations of

the primal-dual and out-of-kilter methods.

The primal simplex method has been modified for use with

min-cost network and transportation problems (17,23). The

program we will use is a specialized version of the simplex

method called the modified distribution method, which is used

for transportation problems. Our code was adapted from

Levin, Kirkpatrick, and Rubin (23), and Poole (34). The
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algorithm finds augmenting paths at each pivot, and then

pivots the new variable into the basis. We can use the "big

M" method for our cost structures (i.e. infeasible pairings

will have very large costs) so that we do not need to start

with a feasible solution. Any solution that satisfies the

supply and demand constraints (even over infeasible arcs)

will serve as a starting solution. We can use the big M"

property to advantage during our branching process. When we

set xij 0 we change cij to big M and it is pivoted out of

the basis. Similarly, if we wish xij to be 1, we let

cjj = -M and xij is pivoted into the basis. We can then

start the intermediate solution process from an almost

feasible (and almost optimal) solution. The time required

for such a solution procedure is shorter than if we solved

the new problem from scratch at each iteration.

The algorithm is explained in detail in Levin, et al

(23), and in many Operations Research texts. Poole (34)

gives a BASIC code for the algorithm.

5.5 Time Constraint Subproblems

The final section of this chapter describes the

methodology we can use to solve the subproblem (SIP 1 )

formulated earlier. There are two methods we will -onsider
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for possible use. The first is to convert (SIP 1 ) into a

knapsack problem and then, using knapsack algorithms, find a

solution, or second, because the problem is small, we can

enumerate the solutions and select the best one.

5.5.1 Knapsack Solution Method

Shepardson (40) and Garfinkel and Nemhauser (16) show

two different methods for converting multiple constraints to

a single constraint.

Shepardson uses a prime number technique that will take

a set of constraints such as the time overlap constraints in

(BIP), and combine them into a single constraint. For

example, the constraints

Z.=I fikjYij + Sk = 1 for k = 1, 2,..., K, (5.15)

forms the single constraint

4~ ~ k .Z (fkj in Pk)Yij
2=N .N ( ln Pk)Sk = . ( In Pk), (5.16)

where Pk equals the k th prime number. The main shortcoming

of this method is that the in Pk are normally irrational
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numbers which must be appropriately approximated to find a

solution. As a result, the numbers in the problem may become

very large.

Garfinkel and Nemhauser describe a method which combines

constraints in pairs until all are combined into one

constraint. Suppose we want to combine the constraints

• i f 1 jyij + s1 = 1, (5.17)

and j, f2.y~j + s, = 1 (5.18)

into one.

We first find a multiplication factor, Ce , for one

constraint (say the first). We then multiply the other

constraint oy Ce, and then add the two constraints together.

In our problem we can always weight the constraints by

S= Z fikJ +1 (refer to Garfinkel and Nemhauser). The new

constraint is given by

(f 3+ lf23 )yi + S + S S1 S +O 1 . (5.19)

We can then combine the new equation with another equation,

and repeat the process until only one constraint remains. If

we had a large number of constraints, this method could
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produce some large numbers, but with our problem size the

derived coefficients should not be excessively large.

Once we transform the set covering constraints to

knapsack constraints we can solve the problem by efficient

dynamic programming algorithms. Garfinkel and Nemhauser (16)

give an algorithm that is appropriate for solving this

problem.

5.5.2 Enumeration

Because of the small size of (SIP,), enumeration might

be almost as fast as using a knapsack algorithm. Even though

the problem might have a large number of feasible solutions,

on the average we would expect the problems to be very small,

and solution times very small. We also eliminate the time

required to transform the problem. Therefore we will use the

enumeration technique when implementing the solution

procedure.
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CHAPTER 6

CONCLUSION

6.1 Background

Our goal in this thesis has been to develop a model that

would solve the fighter pilot problem on a micro-computer.

We did not set out to develop a computer code that is in any

sense best, or even efficient. Rather, we wished to-

establish the computational viability of using

micro-computers and modern integer programming methods to

solve scheduling applications such as the squadron pilot

problem. Therefore, most of our observations are geared

toward the problem structure, implementation issues, and a

general evaluation of the method.

In order to ensure that the program would run on a

micro- computer, we developed and tested our code on the IBM

personal computer (IBM PC). Our particular computer was

equipped with a FORTRAN 77 compiler that we decided to use

for this project. The IBM PC contained 128K of internal

memory and 2-320K, 5 1/4" disk drives.
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To test the program we obtained old schedules from the

27th Tactical Fighter Squadron to use as the data. We then

used a subset of the data for the development and initial

stages of testing. We never progressed far enough to try

full size problems.

6.2 Methodology

Our approach to the problem was to solve it in 3 phases:

a matrix generation phase, an optimization phase, and an

output phase.

The matrix generation phase takes the raw data from user

data files and converts the data into a cost matrix and a

feasibility matrix (as we did in the example in Chapter 3).

We puc these two matrices into files, as inputs to the

optimization phase.

We had five raw data files:

1. Pilot data -- this includes the pilot's name and

qualifications data,

2. Pilot accomplishment -- this file contains the number
.4

of each type of flight a pilot has flown,
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3. Pilot availability -- this file contained information

concerning when a pilot was not to be available forp! flying duty (day and times),

4. Requirement data -- this file stores the TACM 51-50

requirements,

: 5. Schedule -- this file holds the schedule we wish to

fill. It includes times, type of flight, and the qualif-

ications required to fly it.

The Optimization phase solved the problem using a branch

and bound algorithm as we have discussed in Chapter 5. We

originally tried to use a general network simplex algorithm

(the code was called NETFLO [21]) to solve zhe relaxed

network problem. The code proved to be too large for the IBM

PC when imbedded in the branch and bound code. We then

decided to use a code designed to solve the classical

Hitchcock transportation problem (34).

The code to solve the subproblems is an enumeration

method. We first develop a matrix that indicates which

pairings are infeasible, so we do not have to consider all

possible solutions to the problem.
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The branch and bound code directs the program flow and

keeps track of the current candidate problem. It puts bounds

on the variables by changing costs depending on whether we

want the variable at 1, 0, or free (e.g., cost equals "M" if

the variable is restricted to zero or equals "-M" if the

variable is restricted to 1).

We use a depth first search to find a feasible solution

quickly. If we find a feasible solution early in the

enumeration procedure, we can reduce the number of problems

to be considered. We also include the option of stopping at

the first feasible solution, which might be useful for

problems that are too large to solve to optimality or for

problems where we obtain "good" or near optimal solutions

before terminating the complete branch and bound eumeration.

At each branch we use the feasibility matrix (as in the

example problem) to exclude all variables that conflict with

the separation variable. This hopefully helps leaa to a

feasible solution. If our transportation algorithm then

yields a solution that includes infeasible arcs, we know
there are no feasible solutions along that branch, so we can

fathom the branch.

Once it has discovered the solution to the problem, the

program writes it into a file for the output generation
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phase.

The output generation phase contains a short program to

sort the solution and display it in a form useful to the

user.

Appendix C contains the computer code of the 3 programs.

6.3 Results

Our first concern was that the cost structure would lead

to unstable solutions. Many of the flight categories have

requirements for only 2 to 4 flights (e.g., DART and INST)

and in our data many pilots had not accomplished any, meaning

that many of the costs were essentially zero. We were

concerned that this degeneracy would have a serious efiect on

our ability to obtain a solution.

We found, in the transportation algorithm, that 70 per

cent of the pivots were degenerate, in that they involved no

transfer of flow. They only moved variables in and out of

the basis. The algorithm did, however, find optimal

solutions each time it was used.
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This means that the subproblems consumed the major share

of the solution time. Reducing the solution time would

require an efficient algorithm for the subproblems (such as a

good 0-1 knapsack algorithm).

Another finding was that the number of pilots

unavailable to fly due to other commitments had a significant

impact on the ability to find a feasible solution (to BIP).

Problems with relatively few instances of unavailable pilots

were solved much faster than problems where pilots had

numerous other duties.

The internal memory of the IBM PC is capable of handling

our program and data. The storage required for an 8 by 25

problem is only •6.5K. The execution code requires 56K of

storage..

6.4 Conclusion

The methods we have discussed do solve the fighter pilot

scheduling problem. There is, however, room for-improvement.
I

The computer code could be improved to accelerate

computations. There may be better algorithms (such as the

". more complicated multiplier adjustment method) to solve the

problem. In the future, we hope to see if any of these
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methods can be successfully implemented on a micro-computer.

Let us analyze our program with respect to the goals we

set for ourselves in Chapter 2. The first goal is to ensure

that TACM 51-50 flight requirements are met. We accomplish

this through our objective function. Our costs are such

that, those pilots who are behind relative to other pilots

will be scheduled more often. Although this approach does

not ensure all flight requirements will be met, it does tend

to keep anyone from lagging behind. Moreover, it gives the

schedulers the flexibility to change scheduling priorities

for the pilots by changing the cost structure.

The second goal is to ensure that each pilot's minimum

and maximum number of flights per week are observed. Our

transportation algorithm, by virtue of our lower and upper

bound transformations ensures that we comply with this

restriction.

The third goal is to ensure no pilot flies without

proper rest, flies with too long a duty day, or is scheduled

when not available to fly. Our development of the overlap

constraints and the feasibility matrix ensure that no one is

scheduled during those times.
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The fourth objective is to solve the problem in less

time than the present system. The present system takes about

two man-days of work to find a "good" ,schedule. Once

proficient with the data structures, schedulers could solve

the problem in less than 1 hour, including inputting data

into the data files and running the program. Clearly, using

this program would provide time savings for the schedulers

and free them for other tasks.

The fifth goal is to run the program on a

micro-computer. We have successfully accomplished this,

however, we have not tried full-scale problems yet. The

storage requirements for our sample problems were well within

the capabilities of the IBM PC, and we postulate that we

could, in fact, solve problems of 30 pilots and 120 flights

on this computer.

We did well on the five goals we stated, but we also

mentioned that we would like to have auxiliary programs that

are useful in daily decision making. We were not successful

on this point as time did not permit us to concentrate on

that aspect of the model. In addition to efforts in

bettering the optimization code, we would like to see someone

develop a user friendly interface with the program, so that

non-technical people could effectively run the optimization.
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We are convinced that the use of Operations Research and

Computer Science planning tools, such as those discussed in

this thesis, are of great benefit to the Air Force.

Specifically, we believe that these tools can be used at the

Squadron and Wing levels, not only for pilot scheduling, but

for many of a number of similar scheduling and allocation

problems.
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APPENDIX A

FLIGHT TYPES

Air Combat Training (ACTT).

These are missions where similar types of aircraft practice "dogfight"

maneuvers against each other. Weapons launches and weapons parameters

are simulated and evaluated with gun camera film (42 of these flights

are required every 6 months).

Dissimilar Air Combat Training (DACT).

These missions are the same as ACTT, except they are flown against other

types of aircraft ( DACT flights are included in the ACTT requirements).

Airborn Gunnery Practice (DART).

This mission involves firing the 20MM cannon at a metal target (Dart)

which is towed 1500 feet behind another aircraft (1 or 2 of these

missions are required depending on the pilnt's experience level).

Intercept Training (DINT).

Intercept training involves using electronic means (e.g. RADAR) to find

and simulate firing on a target. Maneuvers are much more restricted

than in ACTT or DACT due to the limitations of the equipment (5 or 6 of

these missions are required depending on the pilot's experience level).

Night Intercept Training (NINT).

Night intercepts are the same as day intercepts, except they must be

performed at night (4 are required per 6 month period).

Air to Air Refueling (AARD).

A specially modified Boeing 707 or DC-10 carries fuel and the fighters

practice intercepting the "tanker" and taking on gas through an 18 foot

long "boom" on the tail end of the tanker (2 required).
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Night Air to Air Refueling (NAAR).

Night air to air refueling is the same as day refueling except that it

must be accomplished at night (I required).

Instrument Proficiency Flights (INST).

These flights are dedicated to practicing instrument approaches and

other instrument procedures. The are only required for non-experienced

pilots (2 every 6 months).

-9
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APPENDIX B

ADDITIONAL DUTIES

Supervisor of Flying (SOF).

Only Lt Colonels, Majors, and very senior Captians who are experienced

pilots may serve as SOF. The SOF sits in the control tower, and is

responsible for the entire flying operations of the Wing. He has the

authority to cancel flights due to weather or other circumstances. He

also is there to assist any aircraft in time of an emergency, since he

can call on other aircraft, fire trucks, and other resources for help.

Runway Supervisory Officer (RSO).

All MR pilots are qualified to serve as RSO. SOF's are qualified, but do

not serve as RSO. The RSO serves in a special building near the end of

the runway. He ensures the landing patterns are safe and that everyone

lands with their landing gear down. He can also assist in emergencies

by looking over the emergency aircraft for obvious exterior problems

when it flies by.

Range Training Officer (RTO).

RTO's must be MR and have some experience. Approximately half the pilots

are qualified to be RTO's. The RTO monitors flights which fly on a range

where ground stations receive flight information from aircraft and feed

the information into a computer. The computer then displays the flight

on a video screen. The RTO can see a "God's eye" view of the live action

and warn pilots of any dangers. The information is stored, and can be

replayed in the flight debrief. The RTO monitors the live flight for

safety, simulates missle launches in the computer, and relates the misle

results to the fliers.
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APPENDIX C

COMPUTER CODES

These codes were written in FORTRAN 77 for the IBM personal computer.

The first program converts the raw data from the data files into the

cost and feasibility matrices.

The second program is the optimization program that takes the cost and

feasibility data and outputs the optimal schedule.

The third program is a short program to format the output as an easy

to read document.
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C.1 Program to Organize Raw Data into Problem Data

PROGRAM FILGEN
THIS PROGRAM TAKES THE RAW DATA FILES

AND PROCESSES THEM TO DATA THE PILOT
OPTIMIZATION PROGRAM CAN USE.
INTEGER*2 FEAS(1200),P(30,2),FPOINT(150) ,C(30, 150),

*ACC(30,9) ,AVL(30. 10,4) ,REQ(3,9) ,S(150,4) ,SCH(150,3),
*N(0gNDY5,NPLNL,,,,LJvAIL
INTEGER*4 BIG
CHARACTER*4 PC(30,2) qT(150,2)

.7 DATA BIG/3200/

OPEN THE DATA FILES

OPEN(1qFILE=IPILOT.DAT' ,STATUS='OLD')
OPEN(2,FILE-'ACClMP.DAT' 4STATUS-'OLD')
OPEN(3,FILE='AVAIL.DAT' qSTATUS-l'OLD')
OPEN(4,FILE='REQMNT. DAT' ,STATUS-'OLD')
OPEN(5,FILE=' SCHED. DAT' .STATUS='OLD')
OPEN(6,FILE='COST.DAT' qSTATUS='NEW')
OPEN(7,FILE='FEAS.DAT' qSTATUS='NEW')

READ INTO THE PROGRAM THE RAW DATA FILES

READ(1.,1000) NPIL
1000 FORMAT (/115)

DO 5 I1=1.,NJPL.
READ(1,1010) (P(I.J),Jlq,2)q(PC(IvJ),J=1q2)

10)10 FORMAT(1OXi2I5,3XA2,4XqAl)
5 CONTINUE

READ(2,1020) (ACC(1jJ),J=1,9)
1020 FORMAT(//IOX,915)

DO 6 I=25NPIL
READ(2,1025) (ACC(I.,J),J=1,9)

1025 FORMAT(10X,915)
6 CONTINUE

READ(3,I1030) NE(1)

1030 FORMAT(//10X, IS)
IF(NE(1).E0.0) GOTO 8
DO 7 J=1,NE(l)
READ(3,1035) (AVL(1.JgK),K=1,4)

1035 FORMAT(15Xq I3, I7,13,17)
7 CONTINUE
8 CONTINUE
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DO 10 I=2,NPIL
READ(30'(lC)Xq15)-) NE(I)
IF(NE(I)..EQ?.) SOTO 10
DO 9 J=1,NE(I)
READ(3,1035) (AVL(I,J.K),K=1,4)

9 CONTINUE
10 CONTINUE

READ(4..1050) (REQ(1,J),J~14 9)
1050 FORMAT(//i0X,9I5)

DO 20 1=2,~3
READ(4.1055) (REQ(I,J),J=1,9)

1055 FORMAT (10X,915)
20 CONTINUE

READ(5,1060) NFLT
1060 FORMAT(//I5)

READ(5, 1065) (ENDDAY(I). 1=1,5)
1065 FORMAT(5I5)

DO 50 I=1,NFLT
READ(5, 1070) ((,).=,)((,).14

1070 FORMAT(6X,A4,3X,A2, 15,13,I 2q15)
50 CONTINUE

END OF READING PORTION OF THE PROGRAM

MAIN BODY OF THE PROGRAM

WRITE(6, 1100) NPIL,NFLT

1100 FORMAl (1X,215)

SLI=0
DO 65 I=1,NPIL
SLI=SLI+P(I,2)
UL=P(I, 1)-P (I, 2)
WRITE(691110) P(I,1),UL

1110 FORMAT(1X,215)
65 CONTINUE

WRITE(6, 1110) NFLT-SLI,NFLT--SLI

CALL ARCMAT(NFLT,NPIL,ACCALREQ.PC,T,
*NE,.SCH,S6,P, C)

DO 70 J=1,,NFLT4-NPIL
WRITE(6. 1115) (C(I,J), I=1,NPIL+1)

1115 FORMAT(1X,815)
70 CONTINUE

102



DEVELOP THE FEASIBILITY MATRIX

NF=0
DO 130 3=19NFLT
FPOINT (3)=NF+1
MAX=J -'30
IF (MAX. GT. NFLT) MAX=NFLT
DO 90 K=J,,MAX
IF(SCH(Jq3) .GE..SCH(K, 1)) THEN
NF=NF~1
FEAS (NF) =1
ELSE
K=MA X
ENDIF

90 CONTINUE
* CREW DUTY DAYS

J1=ENDDAY (S (3,4))
DO 100 K=J1-12, 31
IF ((SCH(3,1)+1200).LT..SCH(K,2)) THEN
NF=NF+ 1
FEAS (NF)"K
ENDIF

100 CONTINUE
CREW NIGHTS
IF(S(J,4).EQ.4) GOTO 130
DO 110 K=J1+1,Jl+13
IF((SCH(J,3)+1200).GT.SCH(K,1)) THEN.
NF=NF+1
FEAS (NF)=1K
ELSE
K=Jl+13
EN I F

110 CONTINUE
130 CONTINUE

WRITE(7,'(1X915)') NF

DO 135 1=1,35,5
WRITE(7, 1120) (FPOINT(I+J) qJ=0,4)

1120 FORMAT(1X,5I5)
135 CONTINUE

DO 138 1=1,NF,5
WRITE(7, 1130) (FEAS(I+J) ,J=0,4)

1130 FORMAT(lX,5I5)
138 CONTINUE

STOP
END
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THIS SUBROUTINE DEVELOPS THE ARC MATRIX

SUBROUTINE ARCMAT(NFLT,NPIL,ACC,AVL,REQ,PC,
T .NE 2,SCH, S. P, C)
INTEGER*2 NFLT,NPIL..ACC(30vl),C(30,i)
INTEGER*2 AVL(30.10,1),REQ(3q1),.NE(i)

CHARACTER*4 PC (30,1) ,T (15091)

INTEER*2DAY15DAY29 I..JK1,T19T2,BTIMEETIME

DATA BIG/3200/

DO 150 I=i,NPIL+1
DO 140 J=i,NFLT+NPIL
C (I,3) =3200

140 CONTINUE
150 CONTINUE

DO 250 3=ivNFLT
DAY1= (S (3.4 -1) *2400
SCH(J, i)=( (S(J,2)-2)*i00)'DAYI+S(J,3)
SCH(J,3)=((S(J..2)+3)*100)+DAYI+S(J,3)
SCH(J,2)=( (S(J.2)+i)*100)+DAYI
EDS(JW, 3) +30
IF(ED .GE. 60) THEN
ED=ED-60
SCH (3 2) =SCH (3 2) +100
ENDIF
SCH (392) =SCH (3,2) +ED

IFT(,i).~.ACY')THEN
T1=2
ELSEIF(T(311).EQ.'DACT') THEN
Ti =3
ELSEIF(T(Jv1).E..'DART') THEN
Ti =4
ELSEIF(T(J.1) .EQ. 'NINT') THEN
Ti =5
ELSEIF(T(J,1).EQ.'DINT') THEN
Ti=6
ELSEIF(T(J,1).EQ.'INST') THEN
Ti =7
ELSEIF(T(3.1).EQ.'AARD') THEN
Ti=8
ELSE
T1=9
END IF
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DO 230 IrnlNPIL
U 1
IF ((PC(Ivl).EQ.'WG') .AND. (T(31 2) .EQ. 'FL')) SOTO 230
DO 200 Kl=l,NE(I)
DAY2-(AL(IiKlql)-l)*2400
BTIME=DAY2+AVL (IKl, 2)
ETIME=((AVL(IK193)-l)*2400)+AVL(IKl,4)
IF ((ETIME..GT.SCH(J, l)).AND.(BTIME..LT..SCH(J,.3))) THEN
U=0
K1=NE (I)
END IF

200 CONTINUE

IF (U .EQ. 1) THEN
IF (PC(I,.2).EQ.'-N') THEN
T2=1
ELSEIF (PC(Iq2).EQ.'E') THEN
T2=2
ELSE
T2=3
ENDIF
IF((REQ(T2,Tl)..EQ.0).AND. (T2.NE.3)) THEN
C (1,J)B I G
ELSEIF(UREQ(T2,T1).EQ.0).AND. (T2.EQ.3)) THEN
C(IJ)=(3*(ACC(I,1)*100)/REQ(T2,1))+5
ELSE

ENDIF

* C(19J)-C(I,J)*2

23 CNINU
230 CONTINUE

DO 260 I=19NPIL
C(NPIL+lqNFLT+I)=((ACC(I,1)*100)/REQ(T2,l))+5
C(I,NFLT+I)=0

260 CONTINUE
RETURN
END
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DAY=0
N= 1

40 CONTINUE
* -~ DAY=DAY-'-

WRITE(4,1100) DAY

PER =0
FLT=O

50 CONTINUE
* PER=PER+1

WRITE(4,1110) PER
1110 FORMAT('0',' PERIOD ',12)
60 CONTINUE

FLT=FLT+ 1
WRITE(411120) FLT

1120 FORMAT('0'gi'FLIGHT'q 12)
WRITE(4,1130) TVPE(N)

1130 FORMAT('+',2XA5)
WRITE(4..1140) FLTN(N,2)

1140 FORMAT(1+' ,2X, .I5)
70 CONTINUE

WRITE(44 1150) PNAME(X (N))
1150 FORMAT('+',2XA10)

IF(N.EO..NFLT) SOTO 80
N=N+I
IF(FLTN (N-i .3) .EQ.FLTN(N,3)) SOTO 50
IF(FLTN(N-1..4).EQ.FLTN(N.4)) SOTO 60
IF(FLTN(N-1,5).EQ.FLTN(N,5)) SOTO 70
GOTO 40

80 CONTINUE
STOP
END
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.4 C.2 Optimization Program

PROG~RAM SOLL'TN

INTEGER*4 LBqLEBSTARqBIONE6,C(10,35)4 C1(10,35)
INTEGER*4 Ri (10) ,K1(35),R2(35),M(3)
INTEGER*2 NPILNFL-TITERTAGIJKKKqK2,K3,K4
INTEGER*2 Do,D1,D2,SOS2,FP5 P1,MOM1.,QXOR
INTEGER*2 S(10,2) ,A(10,35)
INTEGER*2 D(35,2) ,R3(35) qLYAR (2)
INTEGER*2 XSTAR(45,2)qXANDY(45,2)qS1(45.2),Y(45,2)
INTEGER*4 ,J (7) *SUMP,PJMAX. COSTN MCOST
INTEGER*2 FFEAS. BRANCH, FLAGS FFLAG, NEWNAX
INTEGER*2 NYV LLV,PVAR(2),SIP(7,7)
IN'TEGERU2 X0NE(7) gFEAS"7,7) sNOIEMSO!-.(7)
INTEGER*2 TSOL(7) .FM(7),BFEAS(7)qFPOINT(35)
INTEGER*2 F(80) 4LYRCPR0I3(3,300),NF.ISTART,END,QO

DATA BIG/3200/
DATA NEG /-1o000/
DATA LBSTAR/ 100000/
DATA LYR/O/
DATA FFEA9/1/

OPEN THE FILES

OPEN (1 qFILE='COST. DAT',qSTATUS='OLD')
OPEN(2,FILE='OUTPUT.DAT',STATUS='NEW')

61 OPEN(3..FILE='FEAS.DAT' ,STATUS='OLD')
-OPEN (4q FILE='BIP. DAT',STATUS= NEW' )

READ IN THE PROBLEM DATA

* 9000 FORMAT(lXAq 15)
READ(1, 1000) NPILqNFLT

1000) FORMAT(1X5 2I5)
S2=NPIL+1
D1=NFLT+NPIL
So=(:
D0=0o
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DO 10 I=1,NPIL
READ(14 1010) 6(Iq 1) D(NFLT+I, 1)
D(NFLT+I,2)=D(NFLT+I, 1)
6(1,2) =6(I Il)

1010 FORMtAT(1X,2I5)
10 CONTINUE

READ(14 1010) S(S2, 1) S(S2,2)

DO 20 J=14 Dl
READ(1, 1020, END=20) (C(1 4 3),11I,S2c)

1020 FORMAT(1X,8I5)
DO 18 [-::14lS2
Cl (KqJ)=C(K,J)

18 CONTINUE
20 CONTINUE

DO 22 I=1,NFLT
D (I 1 )=1
D (1.2) =1

22 CONTINUE

DO 25 I=1.,35,5
READ(3,-(iX,515)') (FP(INT(I+J),J=0,4)

25 CONTINUE
DO 30 1I=INF,5

READ(3,'(1X,5I5)',END=30) (F(ItJ) ,J=0,4)
30 CONT INUE

INITIA~L SOLUTION

DO 70 I=1qNPIL
DO 60 J=I,NFLT,NPIL

6 1(Kq ) =
61 (K 42)=J
D2=D2+ 1
A (1,J ) =D (, 2)
S ( I2) =S(I 1 2)-D(J,2)
D (3 2) =0

KK+ 1
60 CONTINUE

Si (P.*: i)=I
Si (K,2)=NFLT+I
D24=D 2-'1
A (I, NFLT4I ) =S(1.,2)
D (NFLT+I 2)=:D (NFLT+I 2)-S (I. 2)
S (1. 2) =0
P.'.= K+ 1

70: CONl I NUE
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.7, Z Y- o. -WC- 7 -T

DO 80 J=NFLT+l..Dl+D0)
61 (K,l)S2
SI (K,2)=3

* D2=D2+1
A (S2, J)=D(W, 2)
S(S2,2)6S(S2,2)-D(Jq2)
D (312) =0
K=K+ 1

80 CONTINUE

* TAG=0

START TRANSPORTATION ALGORITHM

90 CONTINUE
TAG=TAG+1

DUAL VARIABLE CALCULATION

ITER=0
1140 CONTINUE

ITER=ITER+i
WRITE(4, 1150) ITER

1150 FORMAT(1X,' ITERATION',IS)
DO 1160) IlD+D)

Ki (I) =NEG
R2 (I) =10000

1160 CONTINUE
DO 1190 I=1 4 S2+S0)

Ri (I)=NEG
1190 CONYINUE

R=i
K=1
Ri (1)=0
Ki (Si (1,2) )C(S1 l. 1),Sl1(1,2))
GOTO 1240
Ri (S2)=0
DO 1200 I=D24 Di+2-S2. -1

IF(Sl(I,1).ED.S2) THEN
K.i (Si (I,2)) =C(Si (I 1) q 617q2))
K=K+i
DO 1195 P'=1 4 D2f

IF (Si (K,2).*E). 61(1 *2)) THEN
Ri (Si (K 1) )=C (61(I 1) 61(1,2))-441(1 (S61(1. 2))
R=R+l

ENDIF
1195 CONTINUE

ENDIF
1 20:0 CONT INUlE
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1240 CONTINUE
I=1

1250) CONTINUE

IF(Kl(S1(I ,2)).*NE. NEG) 6010 1300
IF(Rl(S1(Iql)).EQ.NEG) GOTO 1330

K=K+ 1
1300 CONTINUE

IF(R1(Sl(l 4 1)).NE.NEG) GOTO 1330~
RI (Si (I,1) )C(S1 (l 1) qS1(I,2) )-K1(61(1,2))
R=R+l

1330 CONTINUE
IF(I.LT.D2) GOTO 1250
IF(K.LT.D1+DO) GOTO 1240
IF(R.LT.S2+SO) 6010 1240

FIND A VARIABLE TO PIVOT ON

I=1

DO 1500 R=1..S2+SO
DO 1490 K=I,D1+DO

IF(R.NE.Sl1.1)) GOTO 1450
M IF(K.NE.S1(I,2)) 6010 1450

.*1 IF( (A(R,K) .EQ.0) .AND.
* (R2(K) *GT.C(R,K)-R1 (R)-K1 I(K))) THEN

R3 (K) =R
END IF
1=I+1
6010 1490

1450 CONTINUE
IF (R2 (K) .61.C (R, K)-R (R) --Ki IK-)) THE-N

R3 (K) =R
ENDIF
IF(M(1) .LT.C(RK)-R1(R)-K1 (K)) 6010 1490
M(1)=C(R,K)-R1 (R)-K1 (K)
M (2) =R
M (3:) =K

1490 CONTINUE
1500 CONTINUE

IF(M(1).GE.0) 6010 2790
WRITE(4,1502) ITER,M(2) .M(3)

1502 FORMAT(1X,'ITER'qI5,'PIVOT',2I5)

FIND A CLOSED PATH FROM R TO t-*

Y(1. 1)=M(2)
V (1 ,2) =M(3)
0=1
IF(M(2).EL,.S2*SO) 6010 1960
M(:)=y (Q, 1)
M1=1
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ROW SEARCH

1610 CONTINUE
I =0

1620 CONTINUE

IF(S1(I,1).GT.MO) GO0TO 1670
IF(S1(I,1).LT.M0) GOTO 1660
IF(SI1,2) .GE.M1) 6OTO 1720

1660 CONTINUE
IF(I.LT.D2) GOTO 1620

1670 CONTINUE
IF(Q.NE.1) GOTO 1830
WRITE (4q 6060)

8080 FORMAT(1XW 'DEGENERATE MATRIX')
STOP 'DEGEN'
CHECK IF ALREADY USED

1720 CONTINUE
* X0=0

DO 1780 J=1,0
IF(S1(I4 1).NE.Y(J4 1)) GoT 1780
IF(Sl(Iq2).NE.Y(Jq2)) GOTO 1780)
X0=1

1780 CONTINUE
IF(XO.EQ.0) GOTO 1890

IF(M1.LT.D1+DO) GOTO 1660

1930: CONhTINUE
P=Y (0,2)
P1=Y(0, j)+1
Y(0Q 1)=0
Y (C., 2) =0
Q=0-1
GOTO 2000

1890 CONTINUE

Y(0,2)=S (I,2)
IF(Q.LE.2) GOTO 1960
IF(Y(Q4 2).EQ.M(3)) GOTO 2340



COLUMN SEARCH

1q60 CONTINUE
P=Y (U.2)

2000 CONTINUE
K=O

2010 CONTINUE
K=K+1
IF(Sl(K,1).LT.P1) GOTO 2040

20)30 CONTINUE
IF(S1(K,2).EQ.P) GOTO 2120

2040 CONTINUE
IF(K.LT.D2) GOTO 2010

2050 CONTINUE
MO= Y (Q,1I)
Ml=Y (0,2) +1
V(Q, 1)-u
Y (Q, 2) =0

O=-1
GOTO 1610

CHECK FOR UNIQUE PATH SQUARE

2120 CONTINUE

DO 2180 J=1,0
IF (S (Kl ). NE.Y(J~1)) GOTO 2180
IF (SI (K.2).NEY 1,) GOTO 2180

213?) C014TINUE
IF(X0..EQ.0) GOTO 2250
P1=61 (K, 1) +1
IF(Pl.LE.S2'S0) GOTO 2040
GOTO 2050

ADD STONE SQUARE TO PATH

F:2250 CONTINUE
Y(0,2)=S1 (K2)
IF(Q.LE.2) GOTO 2300
IF(Y(0,1).EQ.M(2)) GOTO 2340

2300 CONTINUE
P1=Y (0,1) +1
MO=Y (Q,1)

GOTO 1610
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7.*7.7.7

FIND THE LEAST FLOW CHANGE

2340 CONTINUE
XO=A (Y (2, 1) , Y (2, 2))
DO 2390 K=4,0,2

IF(X0.LEAY(K.1)Y(K,2))) GOTO 2390
XO=A(Y(K. 1) Y(K,2))

2390 CONTINUE

ADD AND SUBTRACT XO ALONG CLOSED PATH

2410 CONTINUE
P=O
DO 2450 K=1.Q,2

A(V(K, 1) Y(K,2) )=A(Y(K, 1> Y(Kw2) )+XO
2450 CONTINUE

DO 2630 K=2,0,2
A (V(K, 1),YV(K. 2)) =A (Y (K.1),YV(K 4 2)) -XO
IF(A(Y(K,1),Y(K.2)).GT.0) SOTO 2630
IF(XO:.EQ.0) GOTO 2500
IF((Y(K.I2).GT.NFLT).AND. (Y(Ki).LT.S2)) GOTO 2630

2500 CONTINUE

I=0
P=P+1
IF(P..GT.1) SOTO 263.0

2530 CONTINUE
1=I+l
IF (Si (I,1) NE.YV(K 4 I)) GOTO 2530
IF(S1(I,2).NE.Y(K,2)) GOTO 2530
IIRlITE(4,805Z") "'(K,1) ,Y(K -, ) , Y')

8050 FORMAT1IX,'-PivoT OUT,2I5,' FLOW=',15)
DO 2590 J=I,D2

61 (J,2)=S1 (3+1,2)
2590 CONTINUE

Si (D2, i)=0
Si (D2,2)=O
D2=D2-1

2630 CONTINUE

INSERT A NEW STONE SQUARE

1=0
2660 CONT INUE

I=I+1

IF(Y(1.1) .LT.S1 (I, 1)) GU-,TO 2700
IF(Y(1,2).GT.S1(I,2)) GOTO 2660

2700 CONT INUE
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DO 2730 J=D2,1,--l
Si (J+,1 1) =Si (L1 1)
Si (J+1,2)=S1(J,2)

2730 CONTINUE
Si (1, i) =Y (1, 1)

D2=D2+1
270SOTO 1140
270CONTINUE

IF(M(1).GE.0) THEN
WRITE (4, 6120)

6120 FORMAT(1X4 'SOLUTION IS OPTIMAL')
END IF

OPTIMAL SOLUTION, FIND LB

LB=0
DO 2600 I~lD2

IF(C(S1 (141) 4S1 (I,2>)).LE.0) THEN
COST=C1 (Si (I, 1) ,61( , 2))

ELSE
COST=C (Si (141) Si(I 2))

ENDIF
LB=LB+ (COST*A (Si (I, 1) 461(12)))

2600 CONTINUE
DO 2605 I=1.NPIL

LB=LB+ ((S (l,1)-D (NFLT+I 1)) *CI (14NFLT+I))
2805 CONTINUE

WRITE(4,6100) TAG.,ITER-1,LB
6100 FORMA- c.1X. TAG' ,I5.' ITER- ,I5,' LB=' , 11)

IF(LB.GT.BIG+100) GOTO 300
IF(TAG.GT.4o) SOTO 350)

THIS SEGMENT STARTS THE SIP SOLUTION PROCEDURE

NEWMA X= 0
FFLAG=0
I =0

410 CONTINUE
I=I+1
NONE=0
DO 415 K<=1,7

XONE (P) =
415 CONTINUE
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3=0
420 CONTINUE

IF(Sl(3,l).EQ.I) THEN
XANDY(3, 1)=Sl (3.1)
XANDY(J.2)=S1 (342)
IF( (A(S1 (3,1) ,S1(3,2>) .GT.0) .AND.
* (S1(J,2).LE.NFLT)) THEN
NONE=NONE+ 1

4 XONE (NONE) =XANDY (342)
ENDIF
END IF
IF(S1(3,1).LE.I) S3OTO 420
WRITE(4, (1X,.715) ') (XONE(KK) ,KIK=1,7)

FILL THE SIP MATRIX

WRITE(4,9000)'START SIP GEN',I
DO 440 KK=1,7

MSOL (KK) =0
DO 430 K4=19~7

SIP (KKK14)=0
430 CONTINUE
440 CONTINUE

FLAG=0
KK=O

450 CONTINUE
KK=KK+ 1
START=FPOIINT (XDNE (1K))
END=FPOINT (XONE (H:) +1)
:F(1(.K.LT..'JONE) THEN
K4=KK

460 CONTINUE
1(4=1(4 +1
DO 470 K3=START+l,END-1

IF(F(K3) .EQ.XONE(K4)) THEN
FFLAG1l
FLAG1l

L ~SIP (KK * 14) =1
END IF

470 CONTINUE
IF(K4.LT.NONE) SOTO 460
ENDIF

r SIP (KKK)=1
WRITE(4. (lX,715) ) (SIP(KK,3) ,3=1,7)
IF(KK.LT.NDNE) GOTO 450
WRITE(44 9000)'END SIP MATRIX C'EN'41
WRIT'E(4,9o:o0) 'FLAG= .FLAG
IF(FLAG.EQ.0) GOTO 725
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FIND THE P3'S

P3MAX=-5
WRITE(4..9000)'START SIP SOLUTION' ..

* SUMPJ =0
NV=NONE
DO 500 3=1 NV

K2=XONE (3)
K3-R3 (K2)
PJ(J)=(C(K3,K12) Ri (13) -K<1(K2) )-(C(I,K2)-R1 (I)-Ki (12))
SUMPJ=SUMPJ+PJ (3)

500 CONT INUE
INITIALIZE FEAS
DO 520 K1 4 ,NY

DO 510 J=1,NV
FEAS (K,3) =0

3510 CONTINUE
520 CONTINUE

FILL IN FEAS
DO 550 J=I,N\V

525 CONT INUE
3=3+1

DO 540 L=1,NV
IF(SIP(L,J).EQ.1) THEN

DO 530 K=14 NV
IF(SIP(L,() EQ. 1) THEN

FEAS (3JK) =1
ENDIF

530 CONTINUE
END IF

v.40 cIONTIM~UE
IF(J.LT.NV) GOTO 525

550 CONTINUE

START THE BRANCHING PROCESS

3=0
555 CONTINUE

3=3+1
DO 560 K=14 NV

TSOL (I<)=O
560 CONTINUE

TSOL (3)=3
COST=PJ (3)
LV=J
FLAG= 0
DO 570 1<=1 4 NV

BFEAS (K) =FEASW(3K 1)
IF(EIFEAS(K) .EO.0)) THEN

FLAG=1
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ENDIF
570 CONTINUE

IF(FLAG.EQ.0) GOTO 600
BRANCH=O

FORWARD BRANCH

575 CONTINUE
K=LY

580 CONTINUE
K=K+1
IF(E'FEAS(K) .EQ.0) THEN

BRANCH= I
TSQL (K)=1K
COST=CDST+PJ(K)
LY=K
FLAG='
DO 590 K4=K, NV

BFEAS (K4) =BFEAS (K4) +FEAS (K, K4)
IF(BFEAS(K4) .EQ.0) THEN

FLAG=l
END I F

590 CONTINUE
K=NV

END IF
IF(K..LT.NV) GOTO 580
IF((BRANCH.EQ.0).OR. (FLAG..EO2.0-)) GnTO 600
BRANCH-0
SOTO 575

BRANCH FATHOMED, CHECK FOR OPTIMUM

600 CONTINUE
IF (COST. GT. COSY> THEt;

MCOST-COST
DO 610 K=14 NY

IF(TSOL (K) .GT.(0) THEN
MSOL (K) =XONE (K)

ELSE
MSOL (K)=0

END IF
610 CONTINUE

END IF

BACKWARD BRANCH

4DO 620 K=LV+1qNV
BFEAS (K) =BFEAS (K) -FEAS (LY4 K)

620 CONTINUE
625 CONTINUE

IF(TSOL(LV).NE.0) SOTO 630
LV=LY-1
IF(LV.LE.0) GOTO 670
SOTO 625
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630 CONTINUE
IF(LV.EQ.3) GOTO 670
TSOL(LV)=O
COST=COST-PJ (LV)
IF(LV.GE..NV) GOTO 600
BRANCH=O

* GOTO 575
670 CONTINUE

IF(J.LT.NY) GOTO 555

WE HAVE THE OPTIMAL SOLUTION FOR THIS I

WRITE(4,9000)'OPTIMUM FOR SIP',I
WRITE(4,' (1X,7I5)") (tNSQL(KK),KK=1,7)
3=0

690 CONTINUE

IF(MSOL (3).EQ.0) THEN
FLAG=0
KK=0

700 CONTINUE
KK=KK+ 1
IF((S1(KK,1).EO.I).AND.(S1(KK,2).EQ.XONE(J))) THEN

XANDV(KVK, 1)=R3(S1 (KK,2))
XANDY(KK,2)=S1 (KK,2)
FLAG=1

ENDIF
IF(FLAG.EO.1) GOTO 705
IF(KK.LT..D2) GOTO 700

705 CONTINUE
END IF
IF(J.L.ENV) GOTO 690

CALCULATE BOUND AND SEPARATION VARIABLE

LB=LB+SUMP3 -MCOST
DO 710 K=1,NV

FLAG-0
IF(MSOL(K).EQ.0) GOTO 710
IF(K.EQ.NV) THEN
DO 706 J=IqNV

IF(FEAS(JqK) .GT.0) THEN
FLAG=FLAG+1

ENDIF
706 CONTINUE

ELSE
DO 707 3=I.NY

IF(FEAS(K,J).GT.0) THEN
FLAG=FLAG+l

END IF
707 CONTINUE

END IF
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IF(FLAGULE.1) SOTO 710
J-0

708 CONTINUE
* 3J=-I-

IF( (CPROB(1.3) EQ. I) ..AND.
* (CPROB(2,J).EQ.XONE(K))) SOTO 710

IF(3.LT.LYR) SOTO 708
IF5(PJMAX.LT.PJ(K)) THEN

PJMAX-PJ (K)
PYAR (1)= I
PYAR (2) =XONE (K)
NEWMAX= 1

ENDIF
710 CONTINUE
725 CONTINUE

WRITE(4,8200) I
8200 FORMAT(1X, 'PILOT', 13, 'FATHOMED')

IF(I.LT.NPIL) GOTO 410
IF(FFLAG.EQ.0) GOTO 280
IF(NEWMAX..EQ.0) SOTO 300
IF( (LYAR(1) .EQ.PVAR(1)) .AMD
* (LYAR(2).EQ..PVAR(2))) GOTO 300

LVAR(I)=PVAR(1)
* LYAR (1)=PVAR (2)

TEST TO SEE IF XANDY IS FEASIBLE

FFLAG=O
1=0
K=O

210 CONTINUE

DO 215 R-1,7
FM (R) =0

215 CONTINUE
DO 220 J=1,D2

IF((XANDY(Jq1)..EQ.I).AND.(XANDV(Jq2).LE.NFLT)) THEN!

FM (K) =XANDY (3.2)
ENDIF

220 CONTINUE

KK=0
230 CONTINUE

KK=KK-1
START=FPOINT (FM (KK))
END-FPDINT(FM(KK)+1)
IF(KK.LT.K) THEN
K4=KK

240 CONTINUE
PK4=K4+ 1
K3=START
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250 CONTINUE
K3-=K3+ 1
IF(F(K3)..EQ..FM(K4)) THEN

FFLAG-1
KK=K
K3=END-1
K4=K

END IF
IF(K3.LT.END-1) SOTO 250
IF(K4.LT.K) SOTO 240
END IF
IF(KK.LT..K) SOTO 230
EF((I.LT.NPIL).AND).(FFLAG.EU.0)) GOTO 210
WRITE(4r.9000) 'FFLAG XANDY=' ,FFLAG
IF(FFLAG.EQ~l) GOTO 320

2 CHECK TO SEE IF XANDY IS OPTIMAL TO BIP

IF(LB.,LT.LBSTAR) THEN
LBSTAR=LB
D0 270 iJ=ID2

XSTAR (3.1)=XANDY (3, 1i
XSTAR (3.,2) =XANDY (3,2)

270 CONT INUE
ENDIF
lP(FFEAS.ED.l) SOTO 350
GOTO 300

CHECK IF Si IS OPTIMAL

280 CONTINUE
IF(133.LT.L.BSTAR) THEN

LE4STAR=LB
DO 290 J=1,D2

XSTAR(3, 1)=61 (3,1)
XSTAR(W, 2) =S1 W, 2)

290 CONTINUE
END IF
IF(FFEAS.EQ.1) SOTO 350

OVERALL BRANCH AND BOUND CONTROL

ELIMINATE VARIABLES

300 CONTINUE
WR ITE (4, B030) TAG

8030 FORMAT(1XCTAG',I5.' ELIMINATE VARS')
310 CONTINUE

120

-



IF(LYR.EQ.0) GOTO 350
FLAG=0

lk IJ=CPROB (1,LYR)
K=CPROB (2, LYR)
IF(CPROB(3,qLYR) .EP.0) THEN

C(J,K)=C1 (J,K)
CPROB (1 LYR) =0
CPROB (2, LYR) =0
LYR=LYR-1
FLAG=1

ELSE
C (3 K) =BIG
CPROB (3, LYR) =0

END IF
IF(FLAG..EQ.1) GOTO 310
GOTO 90

ADD NEW VARIABLES

320 CONTINUE
WRITE(4.,8040) TAGPVAR(1) qPVAR(2)

6040 FORMAT(1Xq'TAG',l5,' ADD VAR',215)
LYR=LYR+l
CPROB (1 LYR) =PVAR (1)
CPROBt(2, LYR)=FPVAR (2)
CPROB (3, LYR) = 1
C (FVAR (1),PYAR (2) )=-3200
ADD ZERO VARIABLES
IF(PVAR(2) .LT. 11) THEN

ELSE
QQ= 10

ENDIF
DO 327 K=PVAR(2)-OQQPVAR(2)-l

DO 32 tl=FPOINT (K) +1.FPOINT (K+1) -1
IF(F(cJ).EQ.PVAR(2)) THEN

LYR=LYR+1
CPROB4(1, LYR) =PVAR ( )
CPROB (24 LYR) -K
CPROI(3. LYR) =0
C (PVAR (1), K)=BIG

ENDIF
3~23 CONTINUE
327 CONTINUE
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START=FPOINT (PVAR (2))
END=FPOINT (PVAR (2) +1)
DO 330 J=START+1qEND-1

* I=PVAR(l)
LYR=LYR-
CPROB (1 4LYR) =I
CPROB(2,LYR)=F(J)
CPROBI(3,~LYR) =0
C(IqF(J) )BIG

330 CONT INLUE
GOTO 90

OPTIMAL SOLUTION IS REACHED

350 CONTINUE
DO 360 1=1D2

IF( (A(XSTfAR(Iq 1) qXSTPAR(Iq2) ) ,T.0) .AND.
* (XSTAR(1,2).LE.NFLT)) THEN

WRITE(2, (IX 43I10)') XSTAR(I. 1) XSTIAR(Iq2),
* ~A(XSTfAR(I4l),XSTAR(Iq2))

ENDIF
360) CONT INUE

LE4=0
DO 370 I=1.D2

LB=LB+ (CI (XSTIR (I. 1) XSTAR (142) ) *(XSTAW (14 ),
XSTAR (, 2)l

370 CONTINUE
WRITE (24 8000) LBSTAR

80C)0 FORMfAT(lXIIlC7 = LBSTAR7)
WRITE(2,8010) TAIG

8010 FORMAT(lXI1104' =NO. OF ITERATIONS')
STOP
END

122



-A.!77

C.3 Program to Format Schedule

PROGRAM OUTPUT

INTEGER*2 FIL(30C0q2)qFLTN(150,5),NUMFX(I50)
INTEGER*2 FLABNPILNFLTiPERDAYvFLTN
CHARACTER*4 TYPE(150) ,PNAME(33)

OPEN(l4 FILE='OUTPUT.DAT' ,STATUS='OLD')
OPEN(2,FILE='PILOT.DAT' qSTATUS='OLD')
OPEN (3,FILE='SCHED.DAT' ,STATU=' OLD')
OPEN(4,FILE='BYNAME.DAT' qSTATUS='NEW')

READ(2,1000) NPIL
1000 FORMAT (f/I5)

DO 10 I=14 NPIL
READ(2, 102o) PNAME(I)

1020 FORMAT (A10)
10 CONTINUE

DO 20 J=IqNFLT
READ(3. 1030) TYPE(J),(FLTN(J,K) d(=1,5)

1030 FORMAT(3XA5,5X,5I5)
20 CONTINUE

DO 30 K=1qNFLT
REAP (1, 1040) FIL (K.1). FIL (K 2)

1040 FORMAT(1X,2I10)
30 CONTINUE

F LT = C
35 CONTINUE

FLT=FLTI-
K=O
FLAG=O

37 CONTINUE
K=Y( 1
IF(FIL(K, 2) .EO..FLT) THEN

X (FLT)-FIL (Kq 1)
FLAG=1

ENDIF
IF(FLAG.EQ-1) GOTO 35
IF(J".LT.NFLT) GOTO 37
IF(FLT.LT.NFLT) GOTO 35
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